Advertisement

Breast Cancer Research and Treatment

, Volume 159, Issue 1, pp 87–95 | Cite as

Phase II studies of two different schedules of dasatinib in bone metastasis predominant metastatic breast cancer: SWOG S0622

  • Anne F. SchottEmail author
  • William E. Barlow
  • Catherine H. Van Poznak
  • Daniel F. Hayes
  • Carol M. Moinpour
  • Danika L. Lew
  • Philip A. Dy
  • Evan T. Keller
  • Jill M. Keller
  • Gabriel N. Hortobagyi
Clinical trial

Abstract

Bone metastases from breast cancer are common, causing significant morbidity. Preclinical data of dasatinib, an oral small molecule inhibitor of multiple oncogenic tyrosine kinases, suggested efficacy in tumor control and palliation of bone metastases in metastatic breast cancer (MBC). This clinical trial aimed to determine whether treatment with either of 2 dose schedules of dasatinib results in a progression-free survival (PFS) >50 % at 24 weeks in bone metastasis predominant MBC, to evaluate the toxicity of the 2 dosing regimens, and explore whether treatment results in decreased serum bone turnover markers and patient-reported “worst pain.” Subjects with bone metastasis predominant MBC were randomly assigned to either 100 mg of dasatinib once daily, or 70 mg twice daily, with treatment continued until time of disease progression or intolerable toxicity. Planned accrual was 40 patients in each arm. The primary trial endpoint was PFS, defined as time from registration to progression or death due to any cause. Median PFS for all eligible patients (79) was 12.6 weeks (95 % CI 9.1–16.7). Neither cohort met the threshold for further clinical interest. There were no significant differences in PFS by randomized treatment arm (p = 0.85). Toxicity was similar in both cohorts, with no clear trend in serum biomarkers of bone turnover or patient-reported pain. Dasatinib was ineffective in controlling bone-predominant MBC in a patient population, unselected by molecular markers. Further study of dasatinib in breast cancer should not be pursued unless performed in molecularly determined patient subsets, or rational combinations.

Keywords

Breast cancer Phase II clinical trial Bone metastasis Tyrosine kinase inhibitors Dasatinib 

Notes

Funding

This work was supported by the National Institutes of Health/National Cancer Institute/National Clinical Trials Network grants CA180888, CA180819, CA180801, CA180834, CA180846; National Institutes of Health/National Cancer Institute Community Oncology Research Program grants CA189971, CA189830, CA189872, CA189954, CA189952, CA189858, CA189856, CA189817, CA190002; National Institutes of Health/National Cancer Institute legacy Grants CA35158, CA35119, CA11083, CA76448, CA04919, CA46282, CA76447, CA22433, CA16385; and in part by the Bristol-Myers Squibb and Janssen Diagnostics Corporation. The content is solely the responsibility of the authors and does not necessarily represent the views of the National Institute of Health or Bristol-Myers Squibb and Janssen Diagnostics Corporation.

Compliance with ethical standards

Conflict of interest

William E. Barlow, Evan T. Keller, Gabriel N. Hortobagyi, Jill M. Keller, Danika L. Lew, Carol M. Moinpour, Philip A. Dy, Anne F. Schott declare no conflict of interest; Catherine H. Van Poznak reports sponsorship of clinical trial to institution by the Bayer Pharmaceuticals; Daniel F. Hayes reports Stock Ownership: Oncimmune LLC, De Soto, KS, USA—stock options (7/20/09), Inbiomotion, Barcelona, Spain—stock options (10/22/12); Lecture/Honorarium: Visiting Consultant for Lilly Oncology, Indianapolis, IN (11/7/14); Sponsored Clinical Research—Principle or co-Investigator: Merrimack Pharmaceuticals, Inc. (Parexel Intl Corp) (01/24/15-02/02/20), Eli Lilly Company (06/19/15-04/30/19), Janssen R&D, LLC (Johnson & Johnson) (12/23/08-04/28/18), Puma Biotechnology, Inc., (subcontract Wash Univ St. Louis to Univ Mich) (07/19/13-07/31/18), Pfizer (07/22/13-07/14/18), Astra Zeneca (11/01/14-10/31/16), Astra Zeneca (02/06/15-02/05/16; Royalties from licensed technology: Janssen R&D, LLC (Johnson & Johnson) (08/01/14); Patents: Title: A method for predicting progression-free and overall survival at each follow-up timepoint during therapy of metastatic breast cancer patients using circulating tumor cells. Filed 14 Mar 2005 with the European Patent Office, the Netherlands. Application No./Patent No. 05725638.0-1223-US2005008602. Applicant/Proprietor: Immunicon Corporation. Dr. Daniel F. Hayes is designated as inventor/co-inventor; Title: Diagnosis and Treatment of Breast Cancer. Patent No.: US 8,790,878 B2. Date of Patent: Jul. 29, 2014. Applicant Proprietor: University of Michigan. Dr. Daniel F. Hayes is designated as inventor/co-inventor; Title: Circulating Tumor Cell Capturing Techniques and Devices. Patent No.: US 8,951,484 B2. Date of Patent: Feb. 10, 2015. Applicant Proprietor: University of Michigan. Dr. Daniel F. Hayes is designated as inventor/co-inventor.

References

  1. 1.
    Amir E, Ocana A, Seruga B, Freedman O, Clemons M (2010) Lapatinib and HER2 status: results of a meta-analysis of randomized phase III trials in metastatic breast cancer. Cancer Treat Rev 36:410–415. doi: 10.1016/j.ctrv.2009.12.012 CrossRefPubMedGoogle Scholar
  2. 2.
    Araujo J, Logothetis C (2010) Dasatinib: a potent SRC inhibitor in clinical development for the treatment of solid tumors. Cancer Treat Rev 36:492–500. doi: 10.1016/j.ctrv.2010.02.015 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ben-Baruch NE, Bose R, Kavuri SM, Ma CX, Ellis MJ (2015) HER2-Mutated Breast cancer responds to treatment with single-agent neratinib, a second-generation HER2/EGFR tyrosine kinase inhibitor. J Natl Compr Canc Netw 13:1061–1064PubMedPubMedCentralGoogle Scholar
  4. 4.
    Blomqvist C, Risteli L, Risteli J, Virkkunen P, Sarna S, Elomaa I (1996) Markers of type I collagen degradation and synthesis in the monitoring of treatment response in bone metastases from breast carcinoma. Br J Cancer 73:1074–1079CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Body JJ, Lipton A, Gralow J, Steger GG, Gao G, Yeh H, Fizazi K (2010) Effects of denosumab in patients with bone metastases with and without previous bisphosphonate exposure. J Bone Miner Res 25:440–446. doi: 10.1359/jbmr.090810 CrossRefPubMedGoogle Scholar
  6. 6.
    Buzdar A, Douma J, Davidson N, Elledge R, Morgan M, Smith R, Porter L, Nabholtz J, Xiang X, Brady C (2001) Phase III, multicenter, double-blind, randomized study of letrozole, an aromatase inhibitor, for advanced breast cancer versus megestrol acetate. J Clin Oncol 19:3357–3366PubMedGoogle Scholar
  7. 7.
    Buzdar A, Jonat W, Howell A, Jones SE, Blomqvist C, Vogel CL, Eiermann W, Wolter JM, Azab M, Webster A, Plourde PV (1996) Anastrozole, a potent and selective aromatase inhibitor, versus megestrol acetate in postmenopausal women with advanced breast cancer: results of overview analysis of two phase III trials. Arimidex Study Group. J Clin Oncol 14:2000–2011Google Scholar
  8. 8.
    Cleeland CS (2006) The measurement of pain from metastatic bone disease: capturing the patient’s experience. Clin Cancer Res 12:6236s–6242s. doi: 10.1158/1078-0432.ccr-06-0988 CrossRefPubMedGoogle Scholar
  9. 9.
    Costa L, Demers LM, Gouveia-Oliveira A, Schaller J, Costa EB, de Moura MC, Lipton A (2002) Prospective evaluation of the peptide-bound collagen type I cross-links N-telopeptide and C-telopeptide in predicting bone metastases status. J Clin Oncol 20:850–856CrossRefPubMedGoogle Scholar
  10. 10.
    Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, Miller MC, Reuben JM, Doyle GV, Allard WJ, Terstappen LW, Hayes DF (2004) Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 351:781–791. doi: 10.1056/NEJMoa040766 CrossRefPubMedGoogle Scholar
  11. 11.
    Demers LM, Costa L, Chinchilli VM, Gaydos L, Curley E, Lipton A (1995) Biochemical markers of bone turnover in patients with metastatic bone disease. Clin Chem 41:1489–1494PubMedGoogle Scholar
  12. 12.
    Frame MC (2002) Src in cancer: deregulation and consequences for cell behaviour. Biochim Biophys Acta 1602:114–130PubMedGoogle Scholar
  13. 13.
    Hortobagyi GN, Theriault RL, Porter L, Blayney D, Lipton A, Sinoff C, Wheeler H, Simeone JF, Seaman J, Knight RD (1996) Efficacy of pamidronate in reducing skeletal complications in patients with breast cancer and lytic bone metastases. Protocol 19 Aredia Breast Cancer Study Group. N Engl J Med 335:1785–1791. doi: 10.1056/nejm199612123352401 CrossRefPubMedGoogle Scholar
  14. 14.
    Houze P, Bellik B, Extra JM, Bouro F, Bousquet B (1999) Urinary carboxyterminal telopeptide of collagen I as a potential marker of bone metastases chemotherapy monitoring in breast cancer. Clin Chim Acta 281:77–88CrossRefPubMedGoogle Scholar
  15. 15.
    Jablonka F, Schindler F, Lajolo PP, Pinczowski H, Fonseca FL, Barbieri A, Massonetto LH, Katto FT, Del Giglio A (2009) Serum cross-linked n-telopeptides of type 1 collagen (NTx) in patients with solid tumors. Sao Paulo Med J 127:19–22CrossRefPubMedGoogle Scholar
  16. 16.
    Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, Morony S, Oliveira-dos-Santos AJ, Van G, Itie A, Khoo W, Wakeham A, Dunstan CR, Lacey DL, Mak TW, Boyle WJ, Penninger JM (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397:315–323. doi: 10.1038/16852 CrossRefPubMedGoogle Scholar
  17. 17.
    Lipton A, Costa L, Ali SM, Demers LM (2001) Bone markers in the management of metastatic bone disease. Cancer Treat Rev 27:181–185. doi: 10.1053/ctrv.2000.0212 CrossRefPubMedGoogle Scholar
  18. 18.
    Mitri ZI, Nanda R, Blackwell KL, Costelloe C, Hood I, Brewster AM, Ibrahim NK, HigginbothamKoenig K, Hortobagyi GN, Van Poznak CH, Rimawi MF, Moulder SL (2015) TBCRC-010: Phase I/II study of dasatinib in combination with zoledronic acid (ZA) for the treatment of breast cancer bone metastasis (MBC-bone). NCT00566618. J Clin Oncol 33:11080Google Scholar
  19. 19.
    Miyazaki T, Sanjay A, Neff L, Tanaka S, Horne WC, Baron R (2004) Src kinase activity is essential for osteoclast function. J Biol Chem 279:17660–17666. doi: 10.1074/jbc.M311032200 CrossRefPubMedGoogle Scholar
  20. 20.
    Montero JC, Seoane S, Ocana A, Pandiella A (2011) Inhibition of SRC family kinases and receptor tyrosine kinases by dasatinib: possible combinations in solid tumors. Clin Cancer Res 17:5546–5552. doi: 10.1158/1078-0432.ccr-10-2616 CrossRefPubMedGoogle Scholar
  21. 21.
    Peto R, Davies C, Godwin J, Gray R, Pan HC, Clarke M, Cutter D, Darby S, McGale P, Taylor C, Wang YC, Bergh J, Di Leo A, Albain K, Swain S, Piccart M, Pritchard K (2012) Comparisons between different polychemotherapy regimens for early breast cancer: meta-analyses of long-term outcome among 100,000 women in 123 randomised trials. Lancet 379:432–444. doi: 10.1016/s0140-6736(11)61625-5 CrossRefPubMedGoogle Scholar
  22. 22.
    Playford MP, Schaller MD (2004) The interplay between Src and integrins in normal and tumor biology. Oncogene 23:7928–7946. doi: 10.1038/sj.onc.1208080 CrossRefPubMedGoogle Scholar
  23. 23.
    Savci-Heijink CD, Halfwerk H, Hooijer GK, Horlings HM, Wesseling J, van de Vijver MJ (2015) Retrospective analysis of metastatic behaviour of breast cancer subtypes. Breast Cancer Res Treat 150:547–557. doi: 10.1007/s10549-015-3352-0 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Schott AF, Barlow WE, Albain KS, Chew HK, Wade JL 3rd, Lanier KS, Lew DL, Hayes DF, Gralow JR, Livingston RB, Hortobagyi GN (2012) Phase II trial of simple oral therapy with capecitabine and cyclophosphamide in patients with metastatic breast cancer: SWOG S0430. Oncologist 17:179–187. doi: 10.1634/theoncologist.2011-0235 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Smerage JB, Barlow WE, Hortobagyi GN, Winer EP, Leyland-Jones B, Srkalovic G, Tejwani S, Schott AF, O’Rourke MA, Lew DL, Doyle GV, Gralow JR, Livingston RB, Hayes DF (2014) Circulating tumor cells and response to chemotherapy in metastatic breast cancer: SWOG S0500. J Clin Oncol 32:3483–3489. doi: 10.1200/jco.2014.56.2561 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, Verweij J, Van Glabbeke M, van Oosterom AT, Christian MC, Gwyther SG (2000) New guidelines to evaluate the response to treatment in solid tumors. European organization for research and treatment of cancer, national cancer institute of the United States, National cancer institute of Canada. J Natl Cancer Inst 92:205–216CrossRefPubMedGoogle Scholar
  27. 27.
    Theriault RL, Lipton A, Hortobagyi GN, Leff R, Gluck S, Stewart JF, Costello S, Kennedy I, Simeone J, Seaman JJ, Knight RD, Mellars K, Heffernan M, Reitsma DJ (1999) Pamidronate reduces skeletal morbidity in women with advanced breast cancer and lytic bone lesions: a randomized, placebo-controlled trial. protocol 18 Aredia breast cancer study group. J Clin Oncol 17:846–854PubMedGoogle Scholar
  28. 28.
    Van Poznak C, Somerfield MR, Bast RC, Cristofanilli M, Goetz MP, Gonzalez-Angulo AM, Hicks DG, Hill EG, Liu MC, Lucas W, Mayer IA, Mennel RG, Symmans WF, Hayes DF, Harris LN (2015) Use of biomarkers to guide decisions on systemic therapy for women with metastatic breast cancer: American society of clinical oncology clinical practice guideline. J Clin Oncol 33:2695–2704. doi: 10.1200/jco.2015.61.1459 CrossRefPubMedGoogle Scholar
  29. 29.
    Vinholes J, Coleman R, Lacombe D, Rose C, Tubiana-Hulin M, Bastit P, Wildiers J, Michel J, Leonard R, Nortier J, Mignolet F, Ford J (1999) Assessment of bone response to systemic therapy in an EORTC trial: preliminary experience with the use of collagen cross-link excretion. European organization for research and treatment of cancer. Br J Cancer 80:221–228. doi: 10.1038/sj.bjc.6690506 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Vinholes J, Guo CY, Purohit OP, Eastell R, Coleman RE (1997) Evaluation of new bone resorption markers in a randomized comparison of pamidronate or clodronate for hypercalcemia of malignancy. J Clin Oncol 15:131–138PubMedGoogle Scholar
  31. 31.
    Walls J, Assiri A, Howell A, Rogers E, Ratcliffe WA, Eastell R, Bundred NJ (1999) Measurement of urinary collagen cross-links indicate response to therapy in patients with breast cancer and bone metastases. Br J Cancer 80:1265–1270. doi: 10.1038/sj.bjc.6690496 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Witzig TE, Bossy B, Kimlinger T, Roche PC, Ingle JN, Grant C, Donohue J, Suman VJ, Harrington D, Torre-Bueno J, Bauer KD (2002) Detection of circulating cytokeratin-positive cells in the blood of breast cancer patients using immunomagnetic enrichment and digital microscopy. Clin Cancer Res 8:1085–1091PubMedGoogle Scholar
  33. 33.
    Yoshida K, Sumi S, Arai K, Koga F, Umeda H, Hosoya Y, Honda M, Yano M, Moriguchi H, Kitahara S (1997) Serum concentration of type I collagen metabolites as a quantitative marker of bone metastases in patients with prostate carcinoma. Cancer 80:1760–1767CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Anne F. Schott
    • 1
    Email author
  • William E. Barlow
    • 2
  • Catherine H. Van Poznak
    • 1
  • Daniel F. Hayes
    • 1
  • Carol M. Moinpour
    • 2
    • 3
  • Danika L. Lew
    • 2
  • Philip A. Dy
    • 4
  • Evan T. Keller
    • 1
  • Jill M. Keller
    • 1
  • Gabriel N. Hortobagyi
    • 5
  1. 1.University of MichiganAnn ArborUSA
  2. 2.SWOG Statistical CenterSeattleUSA
  3. 3.Fred Hutchinson Cancer Research CenterSeattleUSA
  4. 4.Heartland Cancer Research NCORPCrossroads Cancer CenterEffinghamUSA
  5. 5.University of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations