Advertisement

Breast Cancer Research and Treatment

, Volume 158, Issue 1, pp 149–155 | Cite as

Plasma fluorescent oxidation products and risk of estrogen receptor-negative breast cancer in the Nurses’ Health Study and Nurses’ Health Study II

  • Kelly A. HirkoEmail author
  • Renée T. Fortner
  • Susan E. Hankinson
  • Tianying Wu
  • A. Heather Eliassen
Epidemiology

Abstract

Findings from epidemiologic studies of oxidative stress biomarkers and breast cancer have been mixed, although no studies have focused on estrogen receptor-negative (ER−) tumors which may be more strongly associated with oxidative stress. We examined prediagnostic plasma fluorescent oxidation products (FlOP), a global biomarker of oxidative stress, and risk of ER− breast cancer in a nested case-control study in the Nurses’ Health Study and Nurses’ Health Study II. ER− breast cancer cases (n = 355) were matched to 355 controls on age, month/time of day of blood collection, fasting status, menopausal status, and menopausal hormone use. Conditional logistic regression models were used to examine associations of plasma FlOP at three emission wavelengths (FlOP_360, FlOP_320, and FlOP_400) and risk of ER− breast cancer. We did not observe any significant associations between FlOP measures and risk of ER− breast cancer overall; the RRQ4vsQ1 (95 %CI) 0.70 (0.43–1.13), p trend = 0.09 for FlOP_360; 0.91(0.56-1.46), p trend = 0.93 for FlOP_320; and 0.62 (0.37-1.03), p trend = 0.10 for FlOP_400. Results were similar in models additionally adjusted for total carotenoid levels and in models stratified by age and total carotenoids. Although high (vs. low) levels of FIOP_360 and FIOP_400 were associated with lower risk of ER− breast cancer in lean women (body mass index (BMI) < 25 kg/m2) but not in overweight/obese women, these differences were not statistically significant (pint = 0.23 for FlOP_360; pint = 0.37 for FlOP_400). Our findings suggest that positive associations of plasma FlOP concentrations and ER− breast cancer risk are unlikely.

Keywords

Fluorescent oxidation products Oxidative stress Breast cancer Estrogen receptor 

Notes

Acknowledgments

This research was supported from the NIH RO1 CA131218, NHS and NHSII UM1: CA186107 and CA176726. KA Hirko was supported by the R25 CA098566 and the T32 CA009001 training grants. RT Fortner was supported by the T32 CA009001 training grant. We would like to thank the participants and staff of the Nurses’ Health Study and the Nurses’ Health Study II for their valuable contributions as well as the following state cancer registries for their help: AL, AZ, AR, CA, CO, CT, DE, FL, GA, ID, IL, IN, IA, KY, LA, ME, MD, MA, MI, NE, NH, NJ, NY, NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA, WA, WY. The authors assume full responsibility for analyses and interpretation of these data.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflicts of interest. The analysis presented here complies with current laws of the country in which they were performed.

References

  1. 1.
    Dreher D, Junod AF (1996) Role of oxygen free radicals in cancer development. Eur J Cancer 32A(1):30–38CrossRefPubMedGoogle Scholar
  2. 2.
    Halliwell B (2007) Oxidative stress and cancer: have we moved forward? Biochem J 401(1):1–11. doi: 10.1042/bj20061131 CrossRefPubMedGoogle Scholar
  3. 3.
    Klaunig JE, Kamendulis LM (2004) The role of oxidative stress in carcinogenesis. Annu Rev Pharmacol Toxicol 44:239–267. doi: 10.1146/annurev.pharmtox.44.101802.121851 CrossRefPubMedGoogle Scholar
  4. 4.
    Sener DE, Gonenc A, Akinci M, Torun M (2007) Lipid peroxidation and total antioxidant status in patients with breast cancer. Cell Biochem Funct 25(4):377–382. doi: 10.1002/cbf.1308 CrossRefPubMedGoogle Scholar
  5. 5.
    Khanzode SS, Muddeshwar MG, Khanzode SD, Dakhale GN (2004) Antioxidant enzymes and lipid peroxidation in different stages of breast cancer. Free Radic Res 38(1):81–85CrossRefPubMedGoogle Scholar
  6. 6.
    Huang YL, Sheu JY, Lin TH (1999) Association between oxidative stress and changes of trace elements in patients with breast cancer. Clin Biochem 32(2):131–136CrossRefPubMedGoogle Scholar
  7. 7.
    Gonenc A, Ozkan Y, Torun M, Simsek B (2001) Plasma malondialdehyde (MDA) levels in breast and lung cancer patients. J Clin Pharm Ther 26(2):141–144CrossRefPubMedGoogle Scholar
  8. 8.
    Akbulut H, Akbulut KG, Icli F, Buyukcelik A (2003) Daily variations of plasma malondialdehyde levels in patients with early breast cancer. Cancer Detect Prev 27(2):122–126CrossRefPubMedGoogle Scholar
  9. 9.
    Polat MF, Taysi S, Gul M, Cikman O, Yilmaz I, Bakan E, Erdogan F (2002) Oxidant/antioxidant status in blood of patients with malignant breast tumour and benign breast disease. Cell Biochem Funct 20(4):327–331. doi: 10.1002/cbf.980 CrossRefPubMedGoogle Scholar
  10. 10.
    Ray G, Batra S, Shukla NK, Deo S, Raina V, Ashok S, Husain SA (2000) Lipid peroxidation, free radical production and antioxidant status in breast cancer. Breast Cancer Res Treat 59(2):163–170CrossRefPubMedGoogle Scholar
  11. 11.
    Rossner P Jr, Gammon MD, Terry MB, Agrawal M, Zhang FF, Teitelbaum SL, Eng SM, Gaudet MM, Neugut AI, Santella RM (2006) Relationship between urinary 15-F2t-isoprostane and 8-oxodeoxyguanosine levels and breast cancer risk. Cancer Epidemiol Biomarkers Prev 15(4):639–644. doi: 10.1158/1055-9965.epi-05-0554 CrossRefPubMedGoogle Scholar
  12. 12.
    Tas F, Hansel H, Belce A, Ilvan S, Argon A, Camlica H, Topuz E (2005) Oxidative stress in breast cancer. Med Oncol 22(1):11–15. doi: 10.1385/mo:22:1:011 CrossRefPubMedGoogle Scholar
  13. 13.
    Dai Q, Gao YT, Shu XO, Yang G, Milne G, Cai Q, Wen W, Rothman N, Cai H, Li H, Xiang Y, Chow WH, Zheng W (2009) Oxidative stress, obesity, and breast cancer risk: results from the Shanghai Women’s Health Study. J Clin Oncol 27(15):2482–2488. doi: 10.1200/jco.2008.19.7970 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lee KH, Shu XO, Gao YT, Ji BT, Yang G, Blair A, Rothman N, Zheng W, Chow WH, Kang D (2010) Breast cancer and urinary biomarkers of polycyclic aromatic hydrocarbon and oxidative stress in the Shanghai Women’s Health Study. Cancer Epidemiol Biomarkers Prev 19(3):877–883. doi: 10.1158/1055-9965.epi-09-1098 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Wu T, Willett WC, Rifai N, Rimm EB (2007) Plasma fluorescent oxidation products as potential markers of oxidative stress for epidemiologic studies. Am J Epidemiol 166(5):552–560. doi: 10.1093/aje/kwm119 CrossRefPubMedGoogle Scholar
  16. 16.
    Fortner RT, Tworoger SS, Wu T, Eliassen AH (2013) Plasma florescent oxidation products and breast cancer risk: repeated measures in the Nurses’ Health Study. Breast Cancer Res Treat 141(2):307–316. doi: 10.1007/s10549-013-2673-0 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Sisti JS, Lindstrom S, Kraft P, Tamimi RM, Rosner BA, Wu T, Willett WC, Eliassen AH (2015) Premenopausal plasma carotenoids, fluorescent oxidation products, and subsequent breast cancer risk in the nurses’ health studies. Breast Cancer Res Treat 151(2):415–425. doi: 10.1007/s10549-015-3391-6 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Frei B (1994) Reactive oxygen species and antioxidant vitamins: mechanisms of action. Am J Med 97(3A):5S–13S discussion 22S-28S CrossRefPubMedGoogle Scholar
  19. 19.
    Eliassen AH, Hendrickson SJ, Brinton LA, Buring JE, Campos H, Dai Q, Dorgan JF, Franke AA, Gao YT, Goodman MT, Hallmans G, Helzlsouer KJ, Hoffman-Bolton J, Hulten K, Sesso HD, Sowell AL, Tamimi RM, Toniolo P, Wilkens LR, Winkvist A, Zeleniuch-Jacquotte A, Zheng W, Hankinson SE (2012) Circulating carotenoids and risk of breast cancer: pooled analysis of eight prospective studies. J Natl Cancer Inst 104(24):1905–1916. doi: 10.1093/jnci/djs461 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Zhang X, Spiegelman D, Baglietto L, Bernstein L, Boggs DA, van den Brandt PA, Buring JE, Gapstur SM, Giles GG, Giovannucci E, Goodman G, Hankinson SE, Helzlsouer KJ, Horn-Ross PL, Inoue M, Jung S, Khudyakov P, Larsson SC, Lof M, McCullough ML, Miller AB, Neuhouser ML, Palmer JR, Park Y, Robien K, Rohan TE, Ross JA, Schouten LJ, Shikany JM, Tsugane S, Visvanathan K, Weiderpass E, Wolk A, Willett WC, Zhang SM, Ziegler RG, Smith-Warner SA (2012) Carotenoid intakes and risk of breast cancer defined by estrogen receptor and progesterone receptor status: a pooled analysis of 18 prospective cohort studies. Am J Clin Nutr 95(3):713–725. doi: 10.3945/ajcn.111.014415 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Zhang X, Tworoger SS, Eliassen AH, Hankinson SE (2013) Postmenopausal plasma sex hormone levels and breast cancer risk over 20 years of follow-up. Breast Cancer Res Treat 137(3):883–892. doi: 10.1007/s10549-012-2391-z CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hankinson SE, Willett WC, Manson JE, Colditz GA, Hunter DJ, Spiegelman D, Barbieri RL, Speizer FE (1998) Plasma sex steroid hormone levels and risk of breast cancer in postmenopausal women. J Natl Cancer Inst 90(17):1292–1299CrossRefPubMedGoogle Scholar
  23. 23.
    Tworoger SS, Sluss P, Hankinson SE (2006) Association between plasma prolactin concentrations and risk of breast cancer among predominately premenopausal women. Cancer Res 66(4):2476–2482. doi: 10.1158/0008-5472.can-05-3369 CrossRefPubMedGoogle Scholar
  24. 24.
    Wu T, Rifai N, Roberts LJ 2nd, Willett WC, Rimm EB (2004) Stability of measurements of biomarkers of oxidative stress in blood over 36 hours. Cancer Epidemiol Biomarkers Prev 13(8):1399–1402PubMedGoogle Scholar
  25. 25.
    Frankel EN (1987) Secondary products of lipid oxidation. Chem Phys Lipids 44(2–4):73–85CrossRefPubMedGoogle Scholar
  26. 26.
    Fujimoto K, Neff WE, Frankel EN (1984) The reaction of DNA with lipid oxidation products, metals and reducing agents. Biochim Biophys Acta 795(1):100–107CrossRefPubMedGoogle Scholar
  27. 27.
    Flynn TP, Allen DW, Johnson GJ, White JG (1983) Oxidant damage of the lipids and proteins of the erythrocyte membranes in unstable hemoglobin disease. Evidence for the role of lipid peroxidation. J Clin Invest 71(5):1215–1223CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Jensen MK, Wang Y, Rimm EB, Townsend MK, Willett W, Wu T (2013) Fluorescent oxidation products and risk of coronary heart disease: a prospective study in women. J Am Heart Assoc 2(5):e000195. doi: 10.1161/jaha.113.000195 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Wu T, Rifai N, Willett WC, Rimm EB (2007) Plasma fluorescent oxidation products: independent predictors of coronary heart disease in men. Am J Epidemiol 166(5):544–551. doi: 10.1093/aje/kwm120 CrossRefPubMedGoogle Scholar
  30. 30.
    El-Sohemy A, Baylin A, Kabagambe E, Ascherio A, Spiegelman D, Campos H (2002) Individual carotenoid concentrations in adipose tissue and plasma as biomarkers of dietary intake. Am J Clin Nutr 76(1):172–179PubMedGoogle Scholar
  31. 31.
    Rosner B, Cook N, Portman R, Daniels S, Falkner B (2008) Determination of blood pressure percentiles in normal-weight children: some methodological issues. Am J Epidemiol 167(6):653–666. doi: 10.1093/aje/kwm348 CrossRefPubMedGoogle Scholar
  32. 32.
    Hirko KA, Spiegelman D, Willett WC, Hankinson SE, Eliassen AH (2014) Alcohol consumption in relation to plasma sex hormones, prolactin, and sex hormone-binding globulin in premenopausal women. Cancer Epidemiol Biomarkers Prev 23(12):2943–2953. doi: 10.1158/1055-9965.epi-14-0982 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Rosner B (1983) Percentage points for a generalized ESD many-outlier procedure. Technometrics 25:165–172CrossRefGoogle Scholar
  34. 34.
    Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J (2004) Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem 266(1–2):37–56CrossRefPubMedGoogle Scholar
  35. 35.
    Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84. doi: 10.1016/j.biocel.2006.07.001 CrossRefPubMedGoogle Scholar
  36. 36.
    Yager JD (2000) Endogenous estrogens as carcinogens through metabolic activation. J Natl Cancer Inst Monogr 27:67–73CrossRefPubMedGoogle Scholar
  37. 37.
    Brooks PJ (1997) DNA damage, DNA repair, and alcohol toxicity–a review. Alcohol Clin Exp Res 21(6):1073–1082PubMedGoogle Scholar
  38. 38.
    Sies H (1997) Oxidative stress: oxidants and antioxidants. Exp Physiol 82(2):291–295CrossRefPubMedGoogle Scholar
  39. 39.
    Mahalingaiah PK, Ponnusamy L, Singh KP (2015) Chronic oxidative stress causes estrogen-independent aggressive phenotype, and epigenetic inactivation of estrogen receptor alpha in MCF-7 breast cancer cells. Breast Cancer Res Treat 153(1):41–56. doi: 10.1007/s10549-015-3514-0 CrossRefPubMedGoogle Scholar
  40. 40.
    Gago-Dominguez M, Castelao JE, Pike MC, Sevanian A, Haile RW (2005) Role of lipid peroxidation in the epidemiology and prevention of breast cancer. Cancer Epidemiol Biomarkers Prev 14(12):2829–2839. doi: 10.1158/1055-9965.EPI-05-0015 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Epidemiology and Biostatistics, College of Human MedicineMichigan State UniversityEast LansingUSA
  2. 2.Division of Cancer EpidemiologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
  3. 3.Channing Division of Network Medicine, Department of MedicineBrigham and Women’s Hospital and Harvard Medical SchoolBostonUSA
  4. 4.Department of EpidemiologyHarvard T.H. Chan School of Public HealthBostonUSA
  5. 5.Department of Biostatistics and EpidemiologyUniversity of MassachusettsAmherstUSA
  6. 6.Division of Biostatistics and Epidemiology Department of Environmental HealthUniversity of CincinnatiCincinnatiUSA

Personalised recommendations