Breast Cancer Research and Treatment

, Volume 156, Issue 2, pp 331–341 | Cite as

Revisiting dosing regimen using PK/PD modeling: the MODEL1 phase I/II trial of docetaxel plus epirubicin in metastatic breast cancer patients

  • Emilie Hénin
  • Christophe Meille
  • Dominique Barbolosi
  • Benoit You
  • Jérôme Guitton
  • Athanassios Iliadis
  • Gilles Freyer
Clinical trial


The MODEL1 trial is the first model-driven phase I/II dose-escalation study of densified docetaxel plus epirubicin administration in metastatic breast cancer patients, a regimen previously known to induce unacceptable life-threatening toxicities. The primary objective was to determine the maximum tolerated dose of this densified regimen. Study of the efficacy was a secondary objective. Her2-negative, hormone-resistant metastatic breast cancer patients were treated with escalating doses of docetaxel plus epirubicin every 2 weeks for six cycles with granulocyte colony stimulating factor support. A total of 16 patients were treated with total doses ranging from 85 to 110 mg of docetaxel plus epirubicin per cycle. Dose escalation was controlled by a non-hematological toxicity model. Dose densification was guided by a model of neutrophil kinetics, able to optimize docetaxel plus epirubicin dosing with respect to pre-defined acceptable levels of hematological toxicity while ensuring maximal efficacy. The densified treatment was safe since hematological toxicity was much lower compared to previous findings, and other adverse events were consistent with those observed with this regimen. The maximal tolerated dose was 100 mg given every 2 weeks. The response rate was 45 %; median progression-free survival was 10.4 months, whereas 54.6 months of median overall survival was achieved. The optimized docetaxel plus epirubicin dosing regimen led to fewer toxicities associated with higher efficacy as compared with standard or empirical densified dosing. This study suggests that model-driven dosage adjustment can lead to improved efficacy-toxicity balance in patients with cancer when several anticancer drugs are combined.


Intensification Densification Drug combination Dosing regimen optimization PK/PD modeling 









Body surface area


Granulocyte colony stimulating factors






Maximum tolerated dose


Dose-limiting toxicity


Hand-foot syndrome


Adverse event


Severe adverse event



The authors would like to thank R. Maraval-Gaget, study coordinator at Centre Hospitalier Lyon Sud, and Dr. B. Tranchand for their involvement in the MODEL1 study. We also extend kind thanks to Dr. J. Ciccolini for helping in the preparation of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Rombout F, Aarons L, Karlsson M, Man A, Mentré F, Nygren P, Racine A, Schaefer H, Steimer JL, Troconiz I, VanPeer A (2004) Modelling and simulation in the development and use of anti-cancer agents: an underused tool? J Pharmacokinet Pharmacodyn 31(6):419–440CrossRefPubMedGoogle Scholar
  2. 2.
    Traina TA, Dugan U, Higgins B, Kolinsky K, Theodoulou M, Hudis CA, Norton L (2010) Optimizing chemotherapy dose and schedule by Norton-Simon mathematical modeling. Breast Dis 31(1):7–18PubMedPubMedCentralGoogle Scholar
  3. 3.
    Wallin JE, Friberg LE, Karlsson MO (2010) Model-based neutrophil-guided dose adaptation in chemotherapy: evaluation of predicted outcome with different types and amounts of information. Basic Clin Pharmacol Toxicol 106(3):234–242CrossRefPubMedGoogle Scholar
  4. 4.
    Zandvliet AS, Schellens JH, Beijnen JH, Huitema AD (2008) Population pharmacokinetics and pharmacodynamics for treatment optimization in clinical oncology. Clin Pharmacokinet 47(8):487–513CrossRefPubMedGoogle Scholar
  5. 5.
    Felici A, Verweij J, Sparreboom A (2002) Dosing strategies for anticancer drugs: the good, the bad and body-surface area. Eur J Cancer 38(13):1677–1684CrossRefPubMedGoogle Scholar
  6. 6.
    Ralph LD, Thomson AH, Dobbs NA, Twelves C (2003) A population model of epirubicin pharmacokinetics and application to dosage guidelines. Cancer Chemother Pharmacol 52(1):34–40CrossRefPubMedGoogle Scholar
  7. 7.
    Yamamoto N, Tamura T, Murakami H, Shimoyama T, Nokihara H, Ueda Y, Sekine I, Kunitoh H, Ohe Y, Kodama T, Shimizu M, Nishio K, Ishizuka N, Saijo N (2005) Randomized pharmacokinetic and pharmacodynamic study of docetaxel: dosing based on body-surface area compared with individualized dosing based on cytochrome P450 activity estimated using a urinary metabolite of exogenous cortisol. J Clin Oncol 23(6):1061–1069CrossRefPubMedGoogle Scholar
  8. 8.
    Bailey S, Neuenschwander B, Laird G, Branson M (2009) A Bayesian case study in oncology Phase I combination dose-finding using logistic regression with covariates. J Pharmaceut Stat 19(3):469–484Google Scholar
  9. 9.
    Braun TM, Thall PF, Nguyen H, DeLima M (2007) Simultaneously optimizing dose and schedule of a new cytotoxic agent. Clin Trials 4(2):113–124CrossRefPubMedGoogle Scholar
  10. 10.
    Duan JZ (2007) Applications of population pharmacokinetics in current drug labelling. J Clin Pharm Ther 32(1):57–79CrossRefPubMedGoogle Scholar
  11. 11.
    McClish DK, Roberts JD (2003) Phase I studies of weekly administration of cytotoxic agents: implications of a mathematical model. Invest New Drugs 21(3):299–308CrossRefPubMedGoogle Scholar
  12. 12.
    Meille C, Gentet JC, Barbolosi D, André N, Doz F, Iliadis A (2008) New adaptive method for phase I trials in oncology. Clin Pharmacol Ther 83(6):873–881CrossRefPubMedGoogle Scholar
  13. 13.
    Sandstrom M, Lindman H, Nygren P, Lidbrink E, Bergh J, Karlsson MO (2005) Model describing the relationship between pharmacokinetics and hematologic toxicity of the epirubicin-docetaxel regimen in breast cancer patients. J Clin Oncol 23(3):413–421CrossRefPubMedGoogle Scholar
  14. 14.
    Citron ML, Berry DA, Cirrincione C, Hudis C, Winer EP, Gradishar WJ, Davidson NE, Martino S, Livingston R, Ingle JN, Perez EA, Carpenter J, Hurd D, Holland JF, Smith BL, Sartor CI, Leung EH, Abrams J, Schilsky RL, Muss HB, Norton L (2003) Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of intergroup trial C9741/Cancer and Leukemia Group B Trial 9741. J Clin Oncol 21(8):1431–1439CrossRefPubMedGoogle Scholar
  15. 15.
    Cottu PH, Extra JM, Espie M, Marolleau JP, DeRoquancourt A, Makke J, Miclea JM, Laurence V, Mayeur D, Lerebours F, Cuvier C, Marty M (2001) High-dose sequential epirubicin and cyclophosphamide with peripheral blood stem cell support for advanced breast cancer: results of a phase II study. Br J Cancer 85(9):1240–1246CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Laurence V, Merabet FB, Cottu PH, Cuvier C, Espie M, Marty M (2000) Dose-dense docetaxel and epirubicine combination in advanced breast cancer: preliminary results. Ann Oncol 11(4):28Google Scholar
  17. 17.
    Piccart-Gebhart MJ (2003) Mathematics and oncology: a match for life? J Clin Oncol 21(8):1425–1428CrossRefPubMedGoogle Scholar
  18. 18.
    Friedrichs K, Holzel F, Janicke F (2002) Combination of taxanes and anthracyclines in first-line chemotherapy of metastatic breast cancer: an interim report. Eur J Cancer 38(13):1730–1738CrossRefPubMedGoogle Scholar
  19. 19.
    Gamucci T, D’Ottavio AM, Magnolfi E, Barduagni M, Vaccaro A, Sperduti I, Moscetti L, Belli F, Meliffi L (2007) Weekly epirubicin plus docetaxel as first-line treatment in metastatic breast cancer. Br J Cancer 97(8):1040–1045CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Nabholtz JM (2003) Docetaxel-anthracycline combinations in metastatic breast cancer. Breast Cancer Res Treat 79(Suppl. 1):S3–S9CrossRefPubMedGoogle Scholar
  21. 21.
    Bonilla L, Ben-Aharon I, Vidal L, Gafter-Gvili A, Leibovici L, Stemmer SM (2010) Dose-dense chemotherapy in nonmetastatic breast cancer: a systematic review and meta-analysis of randomized controlled trials. J Natl Cancer Inst 102(24):1845–1854CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Salminen E, Korpela J, Varpula M, Asola R, Varjo P, Pyrhonen S, Mali P, Hinkka S, Ekholm E (2002) Epirubicin/docetaxel regimen in progressive breast cancer-a phase II study. Anticancer Drugs 13(9):925–929CrossRefPubMedGoogle Scholar
  23. 23.
    Viens P, Roche H, Kerbrat P, Fumoleau P, Guastalla JP, Delozier T (2001) Epirubicin-docetaxel combination in first-line chemotherapy for patients with metastatic breast cancer: final results of a dose-finding and efficacy study. Am J Clin Oncol 24(4):328–335CrossRefPubMedGoogle Scholar
  24. 24.
    Iliadis A, Barbolosi D (2000) Optimizing drug regimens in cancer chemotherapy by an efficacy-toxicity mathematical model. Comput Biomed Res 33(3):211–226CrossRefPubMedGoogle Scholar
  25. 25.
    Meille C, Barbolosi D, Ciccolini J, Freyer G, Iliadis A (2016) Revisiting dosing regimen using PK/PD mathematical modeling: densification and intensification of combination cancer therapy. Clin Pharmacokinet. doi: 10.1007/s40262-016-0374-7 PubMedGoogle Scholar
  26. 26.
    Bissett D, Setanoians A, Cassidy J, Graham MA, Chadwick GA, Wilson P, Auzannet V, LeBail N, Kaye SB, Kerr DJ (1993) Phase I and pharmacokinetic study of taxotere (RP 56976) administered as a 24-hour infusion. Cancer Res 53(3):523–527PubMedGoogle Scholar
  27. 27.
    DeVries EG, Greidanus J, Mulder NH, Nieweg MB, Postmus PE, Schipper DL, Sleijfer DT, Uges DR, Willemse PH (1987) A phase I and pharmacokinetic study with 21-day continuous infusion of epirubicin. J Clin Oncol 5(9):1445–1451Google Scholar
  28. 28.
    Guitton J, Cohen S, Tranchand B, Vignal B, Droz JP, Guillaumont M, Manchon M, Freyer G (2005) Quantification of docetaxel and its main metabolites in human plasma by liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 19(17):2419–2426CrossRefPubMedGoogle Scholar
  29. 29.
    Wall R, McMahon G, Crown J, Clynes M, O’Connor R (2007) Rapid and sensitive liquid chromatography-tandem mass spectrometry for the quantitation of epirubicin and identification of metabolites in biological samples. Talanta 72(1):145–154CrossRefPubMedGoogle Scholar
  30. 30.
    Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, Verweij J, VanGlabbeke M, VanOosterom AT, Christian MC, Gwyther SG (2000) New guidelines to evaluate the response to treatment in solid tumors. J Natl Cancer Inst 92(3):205–216CrossRefPubMedGoogle Scholar
  31. 31.
    Engels FK, Loos WJ, VanDerBol JM, DeBruijn P, Mathijssen RH, Verweij J, Mathot RA (2011) Therapeutic drug monitoring for the individualization of docetaxel dosing: a randomized pharmacokinetic study. Clin Cancer Res 17(2):353–362CrossRefPubMedGoogle Scholar
  32. 32.
    Salas S, Mercier C, Ciccolini J, Pourroy B, Fanciullino R, Tranchand B, Monjanel-Mouterde S, Baciuchka-Palmaro M, Dupuis C, Yang C, Balti M, Lacarelle B, Duffaud F, Durand A, Favre R (2006) Therapeutic drug monitoring for dose individualization of Cisplatin in testicular cancer patients based upon total platinum measurement in plasma. Ther Drug Monit 28(4):532–539CrossRefPubMedGoogle Scholar
  33. 33.
    Salinger DH, McCune JS, Ren AG, Shen DD, Slattery JT, Phillips B, McDonald GB, Vicini P (2006) Real-time dose adjustment of cyclophosphamide in a preparative regimen for hematopoietic cell transplant: a Bayesian pharmacokinetic approach. Clin Cancer Res 12(16):4888–4898CrossRefPubMedGoogle Scholar
  34. 34.
    Kouroussis C, Xydakis E, Potamianou A, Giannakakis T, Kakolyris S, Agelaki S, Sara E, Malamos N, Alexopoulos A, Mavroudis D, Samonis G, Papadouris S, Georgoulias V, Panagos G, The Greek Breast Cancer Cooperative Group (GBCCG) (1999) Front-line treatment of metastatic breast cancer with docetaxel and epirubicin: a multicenter dose-escalation study. Ann Oncol 10(5):547–552CrossRefPubMedGoogle Scholar
  35. 35.
    Pagani O, Sessa C, Nole F, Crivellari D, Lombardi D, Thurlimann B, Hess D, Borner M, Bauer J, Martinelli G, Graffeo R, Zucchetti M, D’Incalci M, Goldhirsch A (2000) Epidoxorubicin and docetaxel as first-line chemotherapy in patients with advanced breast cancer: a multicentric phase I-II study. Ann Oncol 11(8):985–991CrossRefPubMedGoogle Scholar
  36. 36.
    Venturini M, Michelotti A, Papaldo P, DelMastro L, Bergaglio M, Lionetto R, Lunardi G, Sguotti C, Frevola L, Donati S, Rosso R, Cognetti F (2001) Identification of the highest dose of docetaxel associable with active doses of epirubicin. Results from a dose-finding study in advanced breast cancer patients. Ann Oncol 12(8):1097–1106CrossRefPubMedGoogle Scholar
  37. 37.
    Airoldi M, Cattel L, Pedani F, Marchionatti S, Tagini V, Bumma C, Recalenda V (2001) Clinical and pharmacokinetic data of a docetaxel-epirubicin combination in metastatic breast cancer. Breast Cancer Res Treat 70(3):185–195CrossRefPubMedGoogle Scholar
  38. 38.
    Alba E, Martin M, Ramos M, Adrover E, Balil A, Jara C, Barnadas A, Fernandez-Aramburo A, Sanchez-Rovira P, Amenedo M, Casado A (2004) Multicenter randomized trial comparing sequential with concomitant administration of doxorubicin and docetaxel as first-line treatment of metastatic breast cancer: A Spanish Breast Cancer Research Group (GEICAM-9903) phase III study. J Clin Oncol 22(13):2587–2593CrossRefPubMedGoogle Scholar
  39. 39.
    Mavroudis D, Alexopoulos A, Ziras N, Malamos N, Kouroussis C, Kakolyris S, Agelaki S, Kalbakis K, Tsavaris N, Potamianou A, Rigatos G, Georgoulias V (2000) Front-line treatment of advanced breast cancer with docetaxel and epirubicin: a multicenter phase II study. Ann Oncol 11(10):1249–1254CrossRefPubMedGoogle Scholar
  40. 40.
    Morales S, Lorenzo A, Ramos M, Ballesteros P, Mendez M, Almanza C, Castellanos J, Moreno-Nogueira JA, Casal J, Lizon J, Oltra A, Frau A, Machengs I, Galan A, Belon J, Llorca C (2004) Docetaxel plus epirubicin is a highly active, well-tolerated, first-line chemotherapy for metastatic breast cancer: results of a large, multicentre phase II study. Cancer Chemother Pharmacol 53(1):75–81CrossRefPubMedGoogle Scholar
  41. 41.
    Piccart-Gebhart MJ, Burzykowski T, Buyse M, Sledge G, Carmichael J, Luck HJ, Mackey JR, Nabholtz JM, Paridaens R, Biganzoli L, Jassem J, Bontenbal M, Bonneterre J, Chan S, Basaran GA, Therasse P (2008) Taxanes alone or in combination with anthracyclines as first-line therapy of patients with metastatic breast cancer. J Clin Oncol 26(12):1980–1986CrossRefPubMedGoogle Scholar
  42. 42.
    Nishimura R, Rai Y, Matsuo F, Anan K, Hara S, Imamura S, Itoyanagi N, Kato M, Okido M, Kudaka M, Ishikawa E, Kamada Y, Watanabe R, Shirouzu M, Mitsuyama S, Takamatsu Y, Tamura K (2012) Neoadjuvant epirubicin/docetaxel (ET) concomitant chemotherapy for primary breast cancer with tumor diameter ≥3.1 cm: results of the Kyushu ET therapy phase II trial. Anticancer Res 32(8):3259–3265PubMedGoogle Scholar
  43. 43.
    LoRusso PM, Anderson AB, Boerner SA, Averbuch SD (2010) Making the investigational oncology pipeline more efficient and effective: Are we headed in the right direction? Clin Cancer Res 16(24):5956–5962CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Emilie Hénin
    • 1
    • 2
  • Christophe Meille
    • 3
    • 6
  • Dominique Barbolosi
    • 3
  • Benoit You
    • 1
    • 2
    • 4
  • Jérôme Guitton
    • 1
    • 2
    • 5
  • Athanassios Iliadis
    • 3
  • Gilles Freyer
    • 1
    • 2
    • 4
  1. 1.EMR3738, Ciblage Thérapeutique en Oncologie, Faculté de Médecine et de Maïeutique Lyon Sud Charles Mérieux, Université Claude BernardOullinsFrance
  2. 2.Université de LyonLyonFrance
  3. 3.Pharmacokinetics Unit, Aix-Marseille University, SMARTc, Inserm CRO2 UMR_S 911MarseilleFrance
  4. 4.Institut de Cancérologie des HCL, Service d’Oncologie MédicaleCentre Hospitalier Lyon Sud69495France
  5. 5.Département de PharmacologieCentre Hospitalo-Universitaire Lyon SudPierre BéniteFrance
  6. 6.OCP-TCO, Novartis Pharma AG, WSJ-340.5.25.27BaselSwitzerland

Personalised recommendations