Advertisement

Breast Cancer Research and Treatment

, Volume 154, Issue 3, pp 495–508 | Cite as

Simvastatin prevents triple-negative breast cancer metastasis in pre-clinical models through regulation of FOXO3a

  • Adam R. Wolfe
  • Bisrat G. Debeb
  • Lara Lacerda
  • Richard Larson
  • Arvind Bambhroliya
  • Xuelin Huang
  • Francois Bertucci
  • Pascal Finetti
  • Daniel Birnbaum
  • Steven Van Laere
  • Parmeswaran Diagaradjan
  • Brian Ruffell
  • Nicholaus J. Trenton
  • Khoi Chu
  • Walter Hittelman
  • Michael Diehl
  • Ilya Levental
  • Naoto T. Ueno
  • Wendy A. WoodwardEmail author
Preclinical Study

Abstract

We previously reported using statins was correlated with improved metastasis-free survival in aggressive breast cancer. The purpose of this study was to examine the effect of statins on metastatic colonization by triple-negative breast cancer (TNBC) cells. TNBC cell lines were treated with simvastatin and then studied for cell cycle progression and proliferation in vitro, and metastasis formation in vivo, following injection of statin-treated cells. Reverse-phase protein assay (RPPA) analysis was performed on statin-treated and control breast cancer cells. RNA interference targeting FOXO3a was used to measure the impact of simvastatin on FOXO3a-expressing cells. The prognostic value of FOXO3a mRNA expression was examined in eight public breast cancer gene expression datasets including 1479 patients. Simvastatin increased G1/S-phase arrest of the cell cycle and inhibited both proliferation and migration of TNBC cells in vitro. In vitro pre-treatment and in vivo treatment with simvastatin reduced metastases. Phosphorylated FOXO3a was downregulated after simvastatin treatment in (RPPA) analysis. Ectopic expression of FOXO3a enhanced mammosphere formation and migratory capacity in vitro. Knockdown of FOXO3a attenuated the effect of simvastatin on mammosphere formation and migration. Analysis of public gene expression data demonstrates FOXO3a mRNA downregulation was independently associated with shorter metastasis-free survival in all breast cancers, as well as in TNBC breast cancers. Simvastatin inhibits in vitro endpoints associated with metastasis through a FOXO3a mechanism and reduced metastasis formation in vivo. FOXO3a expression is prognostic for metastasis formation in patient data. Further investigation of simvastatin as a cancer therapy is warranted.

Keywords

Triple-negative breast cancer Metastasis Simvastatin FOXO3a 

Notes

Acknowledgments

This work was supported by the National Institutes of Health R01CA138239-01 and 1R01CA180061-01, the State of Texas Grant for Rare and Aggressive Breast Cancer Research Program, and an institutional research grant from The University of Texas MD Anderson Cancer Center. The Research Animal Support Facility-Houston, Small Animal Imaging Facility, Flow Cytometry and Cellular Imaging Facility, and Research Histopathology Facility are supported in part by the National Institutes of Health through MD Anderson Cancer Center Support (core) Grant CA016672. Lacerda and Debebare recipients of Susan G. Komen for the Cure® Postdoctoral Fellowships (PDF12226438, KG101478, and KG111387, respectively).

Financial Support

This work was supported by the National Institutes of Health R01CA138239-01 and 1R01CA180061-01, the State of Texas Grant for Rare and Aggressive Breast Cancer Research Program, and an institutional research grant from The University of Texas MD Anderson Cancer Center. The Research Animal Support Facility-Houston, Small Animal Imaging Facility, Flow Cytometry and Cellular Imaging Facility, and Research Histopathology Facility are supported in part by the National Institutes of Health through MD Anderson Cancer Center Support (core) Grant CA016672. Lacerda and Debebare recipients of Susan G. Komen for the Cure® Postdoctoral Fellowships (PDF12226438, KG101478, and KG111387, respectively). Adam Wolfe is recipient of a National Center for Clinical and Translational Science Grant TL1-TR000369 fellowship.

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

10549_2015_3645_MOESM1_ESM.docx (4.7 mb)
Supplementary material 1 (DOCX 4768 KB)

References

  1. 1.
    Foulkes WD, Smith IE, Reis-Filho JS (2010) Triple-negative breast cancer. N Engl J Med 363(20):1938–1948CrossRefPubMedGoogle Scholar
  2. 2.
    Woodward WA, Sulman EP (2008) Cancer stem cells: markers or biomarkers? Cancer Metastasis Rev 27(3):459–470CrossRefPubMedGoogle Scholar
  3. 3.
    Medema JP (2013) Cancer stem cells: the challenges ahead. Nat Cell Biol 15(4):338–344CrossRefPubMedGoogle Scholar
  4. 4.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100(7):3983–3988PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Liu H, Patel MR, Prescher JA, Patsialou A, Qian D, Lin J, Wen S, Chang YF, Bachmann MH, Shimono Y, Dalerba P, Adorno M, Lobo N, Bueno J, Dirbas FM, Goswami S, Somlo G, Condeelis J, Contag CH, Gambhir SS, Clarke MF (2010) Cancer stem cells from human breast tumors are involved in spontaneous metastases in orthotopic mouse models. Proc Natl Acad Sci USA 107(42):18115–18120PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Ginestier C, Monville F, Wicinski J, Cabaud O, Cervera N, Josselin E, Finetti P, Guille A, Larderet G, Viens P, Sebti S, Bertucci F, Birnbaum D, Charafe-Jauffret E (2012) Mevalonate metabolism regulates Basal breast cancer stem cells and is a potential therapeutic target. Stem Cells 30(7):1327–1337CrossRefPubMedGoogle Scholar
  7. 7.
    Ahern TP, Pedersen L, Tarp M, Cronin-Fenton DP, Garne JP, Silliman RA, Sorensen HT, Lash TL (2011) Statin prescriptions and breast cancer recurrence risk: a Danish nationwide prospective cohort study. J Natl Cancer Inst 103(19):1461–1468PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Brewer TM, Masuda H, Liu DD, Shen Y, Liu P, Iwamoto T, Kai K, Barnett CM, Woodward WA, Reuben JM, Yang P, Hortobagyi GN, Ueno NT (2013) Statin use in primary inflammatory breast cancer: a cohort study. Br J Cancer 109(2):318–324PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Lacerda L, Reddy JP, Liu D, Larson R, Li L, Masuda H, Brewer T, Debeb BG, Xu W, Hortobagyi GN, Buchholz TA, Ueno NT, Woodward WA (2014) Simvastatin radiosensitizes differentiated and stem-like breast cancer cell lines and is associated with improved local control in inflammatory breast cancer patients treated with postmastectomy radiation. Stem Cells Transl Med 3(7):849–856PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Chan KK, Oza AM, Siu LL (2003) The statins as anticancer agents. Clin Cancer Res 9(1):10–19PubMedGoogle Scholar
  11. 11.
    Bansal D, Undela K, D’Cruz S, Schifano F (2012) Statin use and risk of prostate cancer: a meta-analysis of observational studies. PLoS One 7(10):e46691PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Bonovas S, Filioussi K, Tsavaris N, Sitaras NM (2005) Use of statins and breast cancer: a meta-analysis of seven randomized clinical trials and nine observational studies. J Clin Oncol 23(34):8606–8612CrossRefPubMedGoogle Scholar
  13. 13.
    Mantha AJ, McFee KE, Niknejad N, Goss G, Lorimer IA, Dimitroulakos J (2003) Epidermal growth factor receptor-targeted therapy potentiates lovastatin-induced apoptosis in head and neck squamous cell carcinoma cells. J Cancer Res Clin Oncol 129(11):631–641CrossRefPubMedGoogle Scholar
  14. 14.
    Kotamraju S, Williams CL, Kalyanaraman B (2007) Statin-induced breast cancer cell death: role of inducible nitric oxide and arginase-dependent pathways. Cancer Res 67(15):7386–7394CrossRefPubMedGoogle Scholar
  15. 15.
    Luan Z, Chase AJ, Newby AC (2003) Statins inhibit secretion of metalloproteinases-1, -2, -3, and -9 from vascular smooth muscle cells and macrophages. Arterioscler Thromb Vasc Biol 23(5):769–775CrossRefPubMedGoogle Scholar
  16. 16.
    Hakamada-Taguchi R, Uehara Y, Kuribayashi K, Numabe A, Saito K, Negoro H, Fujita T, Toyo-oka T, Kato T (2003) Inhibition of hydroxymethylglutaryl-coenzyme a reductase reduces Th1 development and promotes Th2 development. Circ Res 93(10):948–956CrossRefPubMedGoogle Scholar
  17. 17.
    Alber HF, Dulak J, Frick M, Dichtl W, Schwarzacher SP, Pachinger O, Weidinger F (2002) Atorvastatin decreases vascular endothelial growth factor in patients with coronary artery disease. J Am Coll Cardiol 39(12):1951–1955CrossRefPubMedGoogle Scholar
  18. 18.
    Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, Wicha MS (2003) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17(10):1253–1270PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Klopp AH, Lacerda L, Gupta A, Debeb BG, Solley T, Li L, Spaeth E, Xu W, Zhang X, Lewis MT, Reuben JM, Krishnamurthy S, Ferrari M, Gaspar R, Buchholz TA, Cristofanilli M, Marini F, Andreeff M, Woodward WA (2010) Mesenchymal stem cells promote mammosphere formation and decrease E-cadherin in normal and malignant breast cells. PLoS One 5(8):e12180PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4(2):249–264CrossRefPubMedGoogle Scholar
  21. 21.
    Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, Pietenpol JA (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Investig 121(7):2750–2767PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Sabatier R, Finetti P, Mamessier E, Adelaide J, Chaffanet M, Ali HR, Viens P, Caldas C, Birnbaum D, Bertucci F (2015) Prognostic and predictive value of PDL1 expression in breast cancer. Oncotarget 6(7):5449–5464PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM (2005) REporting recommendations for tumour MARKer prognostic studies (REMARK). Br J Cancer 93(4):387–391PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Fu Z, Tindall DJ (2008) FOXOs, cancer and regulation of apoptosis. Oncogene 27(16):2312–2319PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Hindler K, Cleeland CS, Rivera E, Collard CD (2006) The role of statins in cancer therapy. Oncologist 11(3):306–315CrossRefPubMedGoogle Scholar
  26. 26.
    Keyomarsi K, Sandoval L, Band V, Pardee AB (1991) Synchronization of tumor and normal cells from G1 to multiple cell cycles by lovastatin. Cancer Res 51(13):3602–3609PubMedGoogle Scholar
  27. 27.
    Wejde J, Blegen H, Larsson O (1992) Requirement for mevalonate in the control of proliferation of human breast cancer cells. Anticancer Res 12(2):317–324PubMedGoogle Scholar
  28. 28.
    Seeger H, Wallwiener D, Mueck AO (2003) Statins can inhibit proliferation of human breast cancer cells in vitro. Exp Clin Endocrinol Diabetes 111(1):47–48CrossRefPubMedGoogle Scholar
  29. 29.
    Issat T, Nowis D, Legat M, Makowski M, Klejman MP, Urbanski J, Skierski J, Koronkiewicz M, Stoklosa T, Brzezinska A, Bil J, Gietka J, Jakobisiak M, Golab J (2007) Potentiated antitumor effects of the combination treatment with statins and pamidronate in vitro and in vivo. Int J Oncol 30(6):1413–1425PubMedGoogle Scholar
  30. 30.
    Koyuturk M, Ersoz M, Altiok N (2007) Simvastatin induces apoptosis in human breast cancer cells: p53 and estrogen receptor independent pathway requiring signalling through JNK. Cancer Lett 250(2):220–228CrossRefPubMedGoogle Scholar
  31. 31.
    Kang S, Kim ES, Moon A (2009) Simvastatin and lovastatin inhibit breast cell invasion induced by H-Ras. Oncol Rep 21(5):1317–1322PubMedGoogle Scholar
  32. 32.
    Klawitter J, Shokati T, Moll V, Christians U (2010) Effects of lovastatin on breast cancer cells: a proteo-metabonomic study. Breast Cancer Res 12(2):R16PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Undela K, Srikanth V, Bansal D (2012) Statin use and risk of breast cancer: a meta-analysis of observational studies. Breast Cancer Res Treat 135(1):261–269CrossRefPubMedGoogle Scholar
  34. 34.
    Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, Cohen HY, Hu LS, Cheng HL, Jedrychowski MP, Gygi SP, Sinclair DA, Alt FW, Greenberg ME (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303(5666):2011–2015CrossRefPubMedGoogle Scholar
  35. 35.
    Ni D, Ma X, Li HZ, Gao Y, Li XT, Zhang Y, Ai Q, Zhang P, Song EL, Huang QB, Fan Y, Zhang X (2014) Downregulation of FOXO3a promotes tumor metastasis and is associated with metastasis-free survival of patients with clear cell renal cell carcinoma. Clin Cancer Res 20(7):1779–1790CrossRefPubMedGoogle Scholar
  36. 36.
    Gopinath SD, Webb AE, Brunet A, Rando TA (2014) FOXO3 promotes quiescence in adult muscle stem cells during the process of self-renewal. Stem Cell Rep 2(4):414–426CrossRefGoogle Scholar
  37. 37.
    Jiang Y, Zou L, Lu WQ, Zhang Y, Shen AG (2013) Foxo3a expression is a prognostic marker in breast cancer. PLoS One 8(8):e70746PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Gray-Bablin J, Rao S, Keyomarsi K (1997) Lovastatin induction of cyclin-dependent kinase inhibitors in human breast cells occurs in a cell cycle-independent fashion. Cancer Res 57(4):604–609PubMedGoogle Scholar
  39. 39.
    Cheng T (2004) Cell cycle inhibitors in normal and tumor stem cells. Oncogene 23(43):7256–7266CrossRefPubMedGoogle Scholar
  40. 40.
    Chappell J, Dalton S (2010) Altered cell cycle regulation helps stem-like carcinoma cells resist apoptosis. BMC Biol 8:63PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Li CJ, Chang JK, Chou CH, Wang GJ, Ho ML (2010) The PI3K/Akt/FOXO3a/p27Kip1 signaling contributes to anti-inflammatory drug-suppressed proliferation of human osteoblasts. Biochem Pharmacol 79(6):926–937CrossRefPubMedGoogle Scholar
  42. 42.
    Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S, Schott A, Hayes D, Birnbaum D, Wicha MS, Dontu G (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1(5):555–567PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Adam R. Wolfe
    • 1
    • 2
  • Bisrat G. Debeb
    • 1
    • 2
  • Lara Lacerda
    • 1
    • 2
  • Richard Larson
    • 1
    • 2
  • Arvind Bambhroliya
    • 1
    • 2
  • Xuelin Huang
    • 3
  • Francois Bertucci
    • 6
  • Pascal Finetti
    • 6
  • Daniel Birnbaum
    • 6
  • Steven Van Laere
    • 7
  • Parmeswaran Diagaradjan
    • 2
  • Brian Ruffell
    • 8
  • Nicholaus J. Trenton
    • 9
  • Khoi Chu
    • 5
  • Walter Hittelman
    • 5
  • Michael Diehl
    • 9
  • Ilya Levental
    • 10
  • Naoto T. Ueno
    • 1
    • 4
  • Wendy A. Woodward
    • 1
    • 2
    Email author
  1. 1.MD Anderson Morgan Welch Inflammatory Breast Cancer Research Program and ClinicThe University of Texas MD Anderson Cancer CenterHoustonUSA
  2. 2.Department of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonUSA
  3. 3.Department of BiostatisticsThe University of Texas MD Anderson Cancer CenterHoustonUSA
  4. 4.Breast Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonUSA
  5. 5.Department of Experimental TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonUSA
  6. 6.Department of Molecular OncologyInstitut Paoli-CalmettesMarseilleFrance
  7. 7.Department of OncologyKU LeuvenLeuvenBelgium
  8. 8.Department of ImmunologyH. Lee Moffitt Cancer Center & Research InstituteTampaUSA
  9. 9.Departments of Chemistry and BioengineeringRice UniversityHoustonUSA
  10. 10.Department of Integrative Biology and PharmacologyUniversity of Texas Health Science Center at HoustonHoustonUSA

Personalised recommendations