Breast Cancer Research and Treatment

, Volume 154, Issue 1, pp 145–154 | Cite as

Hormone-related pathways and risk of breast cancer subtypes in African American women

  • Stephen A. HaddadEmail author
  • Kathryn L. Lunetta
  • Edward A. Ruiz-Narváez
  • Jeannette T. Bensen
  • Chi-Chen Hong
  • Lara E. Sucheston-Campbell
  • Song Yao
  • Elisa V. Bandera
  • Lynn Rosenberg
  • Christopher A. Haiman
  • Melissa A. Troester
  • Christine B. Ambrosone
  • Julie R. Palmer


We sought to investigate genetic variation in hormone pathways in relation to risk of overall and subtype-specific breast cancer in women of African ancestry (AA). Genotyping and imputation yielded data on 143,934 SNPs in 308 hormone-related genes for 3663 breast cancer cases (1098 ER−, 1983 ER+, 582 ER unknown) and 4687 controls from the African American Breast Cancer Epidemiology and Risk (AMBER) Consortium. AMBER includes data from four large studies of AA women: the Carolina Breast Cancer Study, the Women’s Circle of Health Study, the Black Women’s Health Study, and the Multiethnic Cohort Study. Pathway- and gene-based analyses were conducted, and single-SNP tests were run for the top genes. There were no strong associations at the pathway level. The most significantly associated genes were GHRH, CALM2, CETP, and AKR1C1 for overall breast cancer (gene-based nominal p ≤ 0.01); NR0B1, IGF2R, CALM2, CYP1B1, and GRB2 for ER+ breast cancer (p ≤ 0.02); and PGR, MAPK3, MAP3K1, and LHCGR for ER− disease (p ≤ 0.02). Single-SNP tests for SNPs with pairwise linkage disequilibrium r 2 < 0.8 in the top genes identified 12 common SNPs (in CALM2, CETP, NR0B1, IGF2R, CYP1B1, PGR, MAPK3, and MAP3K1) associated with overall or subtype-specific breast cancer after gene-level correction for multiple testing. Rs11571215 in PGR (progesterone receptor) was the SNP most strongly associated with ER− disease. We identified eight genes in hormone pathways that contain common variants associated with breast cancer in AA women after gene-level correction for multiple testing.


Breast cancer Genetics Pathways Hormones African Americans 



We thank participants and staff of the contributing studies. We wish also to acknowledge the late Robert Millikan, DVM, MPH, PhD, who was instrumental in the creation of this consortium. Pathology data were obtained from numerous state cancer registries (Arizona, California, Colorado, Connecticut, Delaware, District of Columbia, Florida, Georgia, Hawaii, Illinois, Indiana, Kentucky, Louisiana, Maryland, Massachusetts, Michigan, New Jersey, New York, North Carolina, Oklahoma, Pennsylvania, South Carolina, Tennessee, Texas, Virginia). The results reported do not necessarily represent their views or the views of the NIH.


This work was supported by the National Institutes of Health (NIH) P01 CA151135 to C.B. Ambrosone, A.F. Olshan, and J.R. Palmer; NIH R01 CA098663 to J.R. Palmer; NIH R01 CA058420 and UM1 CA164974 to L. Rosenberg; NIH R01 CA100598 to C.B. Ambrosone and E.V. Bandera; NIH UM1 CA164973 and RO1 CA54281 to L.N. Kolonel; NIH P50 CA58223 to C. Perou; the U.S. Department of Defense Breast Cancer Research Program, Era of Hope Scholar Award Program grant W81XWH-08-1-0383 to C.A. Haiman; and the University Cancer Research Fund of North Carolina.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in this study.

Research involving human participants

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Supplementary material

10549_2015_3594_MOESM1_ESM.doc (592 kb)
Supplementary material 1 (DOC 592 kb)


  1. 1.
    Siegel R, Ma J, Zou Z, Jemal A (2014) Cancer statistics, 2014: cancer Statistics, 2014. CA Cancer J Clin 64:9–29. doi: 10.3322/caac.21208 CrossRefPubMedGoogle Scholar
  2. 2.
    Joslyn SA, West MM (2000) Racial differences in breast carcinoma survival. Cancer 88:114–123CrossRefPubMedGoogle Scholar
  3. 3.
    Carey LA, Perou CM, Livasy CA et al (2006) Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA 295:2492–2502CrossRefPubMedGoogle Scholar
  4. 4.
    Bauer KR, Brown M, Cress RD et al (2007) Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California cancer Registry. Cancer 109:1721–1728. doi: 10.1002/cncr.22618 CrossRefPubMedGoogle Scholar
  5. 5.
    Huo D, Ikpatt F, Khramtsov A et al (2009) Population differences in breast cancer: survey in indigenous African women reveals over-representation of triple-negative breast cancer. J Clin Oncol 27:4515–4521. doi: 10.1200/JCO.2008.19.6873 PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Stark A, Kleer CG, Martin I et al (2010) African ancestry and higher prevalence of triple-negative breast cancer: findings from an international study. Cancer 116:4926–4932. doi: 10.1002/cncr.25276 PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Hunter DJ, Riboli E, Haiman CA et al (2005) A candidate gene approach to searching for low-penetrance breast and prostate cancer genes. Nat Rev Cancer 5:977–985. doi: 10.1038/nrc1754 CrossRefPubMedGoogle Scholar
  8. 8.
    Nandi S, Guzman RC, Yang J (1995) Hormones and mammary carcinogenesis in mice, rats, and humans: a unifying hypothesis. Proc Natl Acad Sci 92:3650–3657PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Mitrunen K, Hirvonen A (2003) Molecular epidemiology of sporadic breast cancer. Mutat Res Mutat Res 544:9–41. doi: 10.1016/S1383-5742(03)00016-4 CrossRefPubMedGoogle Scholar
  10. 10.
    Liehr JG (2000) Is Estradiol a Genotoxic Mutagenic Carcinogen? 1. Endocr Rev 21:40–54PubMedGoogle Scholar
  11. 11.
    Jefcoate CR, Liehr JG, Santen RJ et al (2000) Tissue-specific synthesis and oxidative metabolism of estrogens. JNCI Monogr 2000:95–112CrossRefGoogle Scholar
  12. 12.
    Cavalieri EL, Stack DE, Devanesan PD et al (1997) Molecular origin of cancer: catechol estrogen-3, 4-quinones as endogenous tumor initiators. Proc Natl Acad Sci 94:10937–10942PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Yue W, Santen R, Wang J-P et al (2003) Genotoxic metabolites of estradiol in breast: potential mechanism of estradiol induced carcinogenesis. J Steroid Biochem Mol Biol 86:477–486. doi: 10.1016/S0960-0760(03)00377-7 CrossRefPubMedGoogle Scholar
  14. 14.
    Henderson BE, Feigelson HS (2000) Hormonal carcinogenesis. Carcinogenesis 21:427–433CrossRefPubMedGoogle Scholar
  15. 15.
    Millikan RC, Newman B, Tse C-K et al (2008) Epidemiology of basal-like breast cancer. Breast Cancer Res Treat 109:123–139PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Palmer JR, Boggs DA, Wise LA et al (2011) Parity and lactation in relation to estrogen receptor negative breast cancer in African American women. Cancer Epidemiol Biomarkers Prev 20:1883–1891. doi: 10.1158/1055-9965.EPI-11-0465 PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Palmer JR, Viscidi E, Troester MA et al (2014) Parity, lactation, and breast cancer subtypes in African American women: results from the AMBER consortium. J Natl Cancer Inst. doi: 10.1093/jnci/dju237 PubMedCentralGoogle Scholar
  18. 18.
    Rosenberg L, Boggs DA, Wise LA et al (2010) Oral contraceptive use and estrogen/progesterone receptor-negative breast cancer among African American women. Cancer Epidemiol Biomarkers Prev 19:2073–2079. doi: 10.1158/1055-9965.EPI-10-0428 PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Ross RK, Paganini-Hill A, Wan PC, Pike MC (2000) Effect of hormone replacement therapy on breast cancer risk: estrogen versus estrogen plus progestin. J Natl Cancer Inst 92:328–332CrossRefPubMedGoogle Scholar
  20. 20.
    Olsson H, Bladström A, Ingvar C, Möller TR (2001) A population-based cohort study of HRT use and breast cancer in southern Sweden. Br J Cancer 85:674PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Beral V, Bull D, Doll R et al (1997) Breast cancer and hormone replacement therapy: collaborative reanalysis of data from 51 epidemiological studies of 52, 705 women with breast cancer and 108, 411 women without breast cancer. Lancet 350:1047–1059CrossRefGoogle Scholar
  22. 22.
    Rossouw JE, Anderson GL, Prentice RL et al (2002) Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the women’s health initiative randomized controlled trial. J Am Med Assoc 288:321–333CrossRefGoogle Scholar
  23. 23.
    Ambrosone CB, Zirpoli Z, Hong C-C et al. (2015) Important role of Menarche in development of estrogen receptor negative breast cancer in African American women. J Natl Cancer Inst (in press)Google Scholar
  24. 24.
    Key T, Appleby P, Barnes I et al (2002) Endogenous sex hormones and breast cancer in postmenopausal women: reanalysis of nine prospective studies. J Natl Cancer Inst 94:606–616CrossRefPubMedGoogle Scholar
  25. 25.
    Woolcott CG, Shvetsov YB, Stanczyk FZ et al (2010) Plasma sex hormone concentrations and breast cancer risk in an ethnically diverse population of postmenopausal women: the Multiethnic Cohort Study. Endocr Relat Cancer 17:125–134. doi: 10.1677/ERC-09-0211 PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Missmer SA, Eliassen AH, Barbieri RL, Hankinson SE (2004) Endogenous estrogen, androgen, and progesterone concentrations and breast cancer risk among postmenopausal women. J Natl Cancer Inst 96:1856–1865. doi: 10.1093/jnci/djh336 CrossRefPubMedGoogle Scholar
  27. 27.
    Eliassen AH, Missmer SA, Tworoger SS et al (2006) Endogenous steroid hormone concentrations and risk of breast cancer among premenopausal women. J Natl Cancer Inst 98:1406–1415. doi: 10.1093/jnci/djj376 CrossRefPubMedGoogle Scholar
  28. 28.
    Kaaks R, Berrino F, Key T et al (2005) Serum sex steroids in premenopausal women and breast cancer risk within the European prospective investigation into cancer and nutrition (EPIC). J Natl Cancer Inst 97:755–765. doi: 10.1093/jnci/dji132 CrossRefPubMedGoogle Scholar
  29. 29.
    Cauley JA, Gutai JP, Kuller LH et al (1994) Black-white differences in serum sex hormones and bone mineral density. Am J Epidemiol 139:1035–1046PubMedGoogle Scholar
  30. 30.
    Paracchini V, Pedotti P, Raimondi S et al (2005) A common CYP1B1 polymorphism is associated with 2-OHE1/16-OHE1 urinary estrone ratio. Clin Chem Lab Med 43:702–706. doi: 10.1515/CCLM.2005.119 CrossRefPubMedGoogle Scholar
  31. 31.
    Small CM (2005) CYP17 genotype predicts serum hormone levels among pre-menopausal women. Hum Reprod 20:2162–2167. doi: 10.1093/humrep/dei054 CrossRefPubMedGoogle Scholar
  32. 32.
    Jasienska G, Kapiszewska M, Ellison PT et al (2006) CYP17 genotypes differ in salivary 17-beta estradiol levels: a study based on hormonal profiles from entire menstrual cycles. Cancer Epidemiol Biomark Prev 15:2131–2135. doi: 10.1158/1055-9965.EPI-06-0450 CrossRefGoogle Scholar
  33. 33.
    Beckmann L, Hüsing A, Setiawan VW et al (2011) Comprehensive analysis of hormone and genetic variation in 36 genes related to steroid hormone metabolism in pre- and postmenopausal women from the breast and prostate cancer cohort consortium (BPC3). J Clin Endocrinol Metab 96:E360–E367. doi: 10.1210/jc.2010-0912 PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Haiman CA, Dossus L, Setiawan VW et al (2007) Genetic variation at the CYP19A1 locus predicts circulating estrogen levels but not breast cancer risk in postmenopausal women. Cancer Res 67:1893–1897. doi: 10.1158/0008-5472.CAN-06-4123 CrossRefPubMedGoogle Scholar
  35. 35.
    Zheng W, Long J, Gao Y-T et al (2009) Genome-wide association study identifies a new breast cancer susceptibility locus at 6q25.1. Nat Genet 41:324–328. doi: 10.1038/ng.318 PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Easton DF, Pooley KA, Dunning AM et al (2007) Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447:1087–1093. doi: 10.1038/nature05887 PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Michailidou K, Hall P, Gonzalez-Neira A et al (2013) Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nat Genet 45:353–361. doi: 10.1038/ng.2563 PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Ruiz-Narvaez EA, Rosenberg L, Yao S et al (2013) Fine-mapping of the 6q25 locus identifies a novel SNP associated with breast cancer risk in African-American women. Carcinogenesis 34:287–291. doi: 10.1093/carcin/bgs334 PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Chen F, Chen GK, Millikan RC et al (2011) Fine-mapping of breast cancer susceptibility loci characterizes genetic risk in African Americans. Hum Mol Genet 20:4491–4503. doi: 10.1093/hmg/ddr367 PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    O’Brien KM, Cole SR, Poole C et al (2014) Replication of breast cancer susceptibility loci in whites and African Americans using a Bayesian approach. Am J Epidemiol 179:382–394. doi: 10.1093/aje/kwt258 PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Rebbeck TR, DeMichele A, Tran TV et al (2008) Hormone-dependent effects of FGFR2 and MAP3K1 in breast cancer susceptibility in a population-based sample of post-menopausal African-American and European-American women. Carcinogenesis 30:269–274. doi: 10.1093/carcin/bgn247 PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Zheng Y, Ogundiran TO, Falusi AG et al (2013) Fine mapping of breast cancer genome-wide association studies loci in women of African ancestry identifies novel susceptibility markers. Carcinogenesis 34:1520–1528. doi: 10.1093/carcin/bgt090 PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Cox DG, Blanché H, Pearce CL et al (2006) A comprehensive analysis of the androgen receptor gene and risk of breast cancer: results from the National Cancer Institute Breast and Prostate Cancer Cohort Consortium (BPC3). Breast Cancer Res 8:R54PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Feigelson HS, Cox DG, Cann HM et al (2006) Haplotype analysis of the HSD17B1 gene and risk of breast cancer: a comprehensive approach to multicenter analyses of prospective cohort studies. Cancer Res 66:2468–2475. doi: 10.1158/0008-5472.CAN-05-3574 CrossRefPubMedGoogle Scholar
  45. 45.
    Setiawan VW, Schumacher FR, Haiman CA et al (2007) CYP17 genetic variation and risk of breast and prostate cancer from the National Cancer Institute Breast and Prostate Cancer Cohort Consortium (BPC3). Cancer Epidemiol Biomark Prev 16:2237–2246CrossRefGoogle Scholar
  46. 46.
    Breast and Prostate Cancer Cohort Consortium (2008) Haplotypes of the estrogen receptor beta gene and breast cancer risk: haplotypes of ESR 2 gene and breast cancer risk. Int J Cancer 122:387–392. doi: 10.1002/ijc.23127 CrossRefGoogle Scholar
  47. 47.
    Canzian F, Kaaks R, Cox DG et al (2009) Genetic polymorphisms of the GNRH1 and GNRHR genes and risk of breast cancer in the National Cancer Institute Breast and Prostate Cancer Cohort Consortium (BPC3). BMC Cancer 9:257. doi: 10.1186/1471-2407-9-257 PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Canzian F, Cox DG, Setiawan VW et al (2010) Comprehensive analysis of common genetic variation in 61 genes related to steroid hormone and insulin-like growth factor-I metabolism and breast cancer risk in the NCI breast and prostate cancer cohort consortium. Hum Mol Genet 19:3873–3884. doi: 10.1093/hmg/ddq291 PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    Palmer JR, Ambrosone CB, Olshan AF (2014) A collaborative study of the etiology of breast cancer subtypes in African American women: the AMBER consortium. Cancer Causes Control 25:309–319. doi: 10.1007/s10552-013-0332-8 PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Newman B, Moorman PG, Millikan R et al (1995) The Carolina breast cancer study: integrating population-based epidemiology and molecular biology. Breast Cancer Res Treat 35:51–60CrossRefPubMedGoogle Scholar
  51. 51.
    Ambrosone CB, Ciupak GL, Bandera EV et al (2009) Conducting molecular epidemiological research in the age of HIPAA: a multi-institutional case-control study of breast cancer in African-American and European-American women. J Oncol 2009:871250. doi: 10.1155/2009/871250 PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    Bandera EV, Chandran U, Zirpoli G et al (2013) Rethinking sources of representative controls for the conduct of case-control studies in minority populations. BMC Med Res Methodol 13:71. doi: 10.1186/1471-2288-13-71 PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    Rosenberg L, Adams-Campbell L, Palmer JR (1995) The black women’s health study: a follow-up study for causes and preventions of illness. J Am Med Women Assoc 50:56–58Google Scholar
  54. 54.
    Kolonel LN, Henderson BE, Hankin JH et al (2000) A multiethnic cohort in Hawaii and Los Angeles: baseline characteristics. Am J Epidemiol 151:346–357PubMedCentralCrossRefPubMedGoogle Scholar
  55. 55.
    Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102:15545–15550PubMedCentralCrossRefPubMedGoogle Scholar
  56. 56.
    McVean GA, Altshuler DM, Durbin RM et al (2012) An integrated map of genetic variation from 1092 human genomes. Nature 491:56–65. doi: 10.1038/nature11632 CrossRefPubMedGoogle Scholar
  57. 57.
    The International HapMap Consortium (2005) A haplotype map of the human genome. Nature 437:1299–1320. doi: 10.1038/nature04226 PubMedCentralCrossRefGoogle Scholar
  58. 58.
    Howie BN, Donnelly P, Marchini J (2009) A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet 5:e1000529. doi: 10.1371/journal.pgen.1000529 PubMedCentralCrossRefPubMedGoogle Scholar
  59. 59.
    Chen F, Chen GK, Stram DO et al (2013) A genome-wide association study of breast cancer in women of African ancestry. Hum Genet 132:39–48. doi: 10.1007/s00439-012-1214-y PubMedCentralCrossRefPubMedGoogle Scholar
  60. 60.
    Patterson N, Price AL, Reich D (2006) Population structure and eigenanalysis. PLoS Genet 2:e190. doi: 10.1371/journal.pgen.0020190 PubMedCentralCrossRefPubMedGoogle Scholar
  61. 61.
    Purcell S, Neale B, Todd-Brown K et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575. doi: 10.1086/519795 PubMedCentralCrossRefPubMedGoogle Scholar
  62. 62.
    Yu K, Li Q, Bergen AW et al (2009) Pathway analysis by adaptive combination of P-values. Genet Epidemiol 33:700–709. doi: 10.1002/gepi.20422 PubMedCentralCrossRefPubMedGoogle Scholar
  63. 63.
    Liquet B, Truong T (2013) PIGE: self contained gene set analysis for gene- and pathway-environment interaction analysis [R package]. Version 0.9.
  64. 64.
    Yu K, Zhang H (2013) AdaJoint: Adaptive Joint Test [R package]. Version 0.1.7.
  65. 65.
    Melamed P, Savulescu D, Lim S et al (2012) Gonadotrophin-releasing hormone signalling downstream of calmodulin. J Neuroendocrinol 24:1463–1475. doi: 10.1111/j.1365-2826.2012.02359.x CrossRefPubMedGoogle Scholar
  66. 66.
    Zhang H, Slewa A, Janssen E et al (2011) The prognostic value of the orphan nuclear receptor DAX-1 (NROB1) in node-negative breast cancer. Anticancer Res 31:443–449PubMedGoogle Scholar
  67. 67.
    Lanzino M, Maris P, Sirianni R et al (2013) DAX-1, as an androgen-target gene, inhibits aromatase expression: a novel mechanism blocking estrogen-dependent breast cancer cell proliferation. Cell Death Dis 4:e724. doi: 10.1038/cddis.2013.235 PubMedCentralCrossRefPubMedGoogle Scholar
  68. 68.
    Johnatty SE, Spurdle AB, Beesley J et al (2008) Progesterone receptor polymorphisms and risk of breast cancer: results from two Australian breast cancer studies. Breast Cancer Res Treat 109:91–99. doi: 10.1007/s10549-007-9627-3 CrossRefPubMedGoogle Scholar
  69. 69.
    Ralph DA, Zhao LP, Aston CE et al (2007) Age-specific association of steroid hormone pathway gene polymorphisms with breast cancer risk. Cancer 109:1940–1948. doi: 10.1002/cncr.22634 CrossRefPubMedGoogle Scholar
  70. 70.
    The Breast Cancer Association Consortium (2006) Commonly studied single-nucleotide polymorphisms and breast cancer: results from the breast cancer association consortium. J Natl Cancer Inst 98:1382–1396. doi: 10.1093/jnci/djj374 CrossRefGoogle Scholar
  71. 71.
    Pooley KA (2006) Association of the progesterone receptor gene with breast cancer risk: a single-nucleotide polymorphism tagging approach. Cancer Epidemiol Biomark Prev 15:675–682. doi: 10.1158/1055-9965.EPI-05-0679 CrossRefGoogle Scholar
  72. 72.
    Gaudet MM, Milne RL, Cox A et al (2009) Five polymorphisms and breast cancer risk: results from the breast cancer association consortium. Cancer Epidemiol Biomark Prev 18:1610–1616. doi: 10.1158/1055-9965.EPI-08-0745 CrossRefGoogle Scholar
  73. 73.
    Gabriel CA, Mitra N, DeMichele A, Rebbeck T (2013) Association of progesterone receptor gene (PGR) variants and breast cancer risk in African American women. Breast Cancer Res Treat 139:833–843. doi: 10.1007/s10549-013-2592-0 CrossRefPubMedGoogle Scholar
  74. 74.
    Diergaarde B, Potter JD, Jupe ER et al (2008) Polymorphisms in genes involved in sex hormone metabolism, estrogen plus progestin hormone therapy use, and risk of postmenopausal breast cancer. Cancer Epidemiol Biomark Prev 17:1751–1759. doi: 10.1158/1055-9965.EPI-08-0168 CrossRefGoogle Scholar
  75. 75.
    Rebbeck TR, Troxel AB, Norman S et al (2007) Pharmacogenetic modulation of combined hormone replacement therapy by progesterone-metabolism genotypes in postmenopausal breast cancer risk. Am J Epidemiol 166:1392–1399. doi: 10.1093/aje/kwm239 CrossRefPubMedGoogle Scholar
  76. 76.
    Kotsopoulos J, Tworoger SS, DeVivo I et al (2009) +331G/A variant in the progesterone receptor gene, postmenopausal hormone use and risk of breast cancer. Int J Cancer 125:1685–1691. doi: 10.1002/ijc.24477 PubMedCentralCrossRefPubMedGoogle Scholar
  77. 77.
    Chambo D, Kemp C, Costa AMM et al (2009) Polymorphism in CYP17, GSTM1 and the progesterone receptor genes and its relationship with mammographic density. Braz J Med Biol Res 42:323–329CrossRefPubMedGoogle Scholar
  78. 78.
    Giacomazzi J, Aguiar E, Palmero EI et al (2012) Prevalence of ERα-397 PvuII C/T, ERα-351 XbaI A/G and PGR PROGINS polymorphisms in Brazilian breast cancer-unaffected women. Braz J Med Biol Res 45:891–897. doi: 10.1590/S0100-879X2012007500081 PubMedCentralCrossRefPubMedGoogle Scholar
  79. 79.
    Zhang H, Li L, Xu Y (2013) CYP1B1 polymorphisms and susceptibility to prostate cancer: a meta-analysis. PLoS One 8:e68634PubMedCentralCrossRefPubMedGoogle Scholar
  80. 80.
    Li C, Long B, Qin X et al (2015) Cytochrome P1B1 (CYP1B1) polymorphisms and cancer risk: a meta-analysis of 52 studies. Toxicology 327:77–86. doi: 10.1016/j.tox.2014.11.007 CrossRefPubMedGoogle Scholar
  81. 81.
    Liu J-Y, Yang Y, Liu Z-Z et al (2015) Association between the CYP1B1 polymorphisms and risk of cancer: a meta-analysis. Mol Genet Genomics 290:739–765. doi: 10.1007/s00438-014-0946-x CrossRefPubMedGoogle Scholar
  82. 82.
    Xu W, Zhou Y, Hang X, Shen D (2012) Current evidence on the relationship between CYP1B1 polymorphisms and lung cancer risk: a meta-analysis. Mol Biol Rep 39:2821–2829. doi: 10.1007/s11033-011-1041-6 CrossRefPubMedGoogle Scholar
  83. 83.
    Wang F, Zou Y-F, Sun G-P et al (2011) Association of CYP1B1 gene polymorphisms with susceptibility to endometrial cancer: a meta-analysis. Eur J Cancer Prev 20:112–120. doi: 10.1097/CEJ.0b013e3283410193 CrossRefPubMedGoogle Scholar
  84. 84.
    Economopoulos KP, Sergentanis TN (2010) Three polymorphisms in cytochrome P450 1B1 (CYP1B1) gene and breast cancer risk: a meta-analysis. Breast Cancer Res Treat 122:545–551. doi: 10.1007/s10549-009-0728-z CrossRefPubMedGoogle Scholar
  85. 85.
    Justenhoven C, Pierl CB, Haas S et al (2008) The CYP1B1_1358_GG genotype is associated with estrogen receptor-negative breast cancer. Breast Cancer Res Treat 111:171–177. doi: 10.1007/s10549-007-9762-x CrossRefPubMedGoogle Scholar
  86. 86.
    Huang Z, Fasco MJ, Figge HL et al (1996) Expression of cytochromes P450 in human breast tissue and tumors. Drug Metab Dispos 24:899–905PubMedGoogle Scholar
  87. 87.
    Spink DC, Spink BC, Cao JQ et al (1998) Differential expression of CYP1A1 and CYP1B1 in human breast epithelial cells and breast tumor cells. Carcinogenesis 19:291–298CrossRefPubMedGoogle Scholar
  88. 88.
    Paracchini V, Raimondi S, Gram IT et al (2007) Meta- and pooled analyses of the cytochrome P-450 1B1 Val432Leu polymorphism and breast cancer: a HuGE-GSEC review. Am J Epidemiol 165:115–125. doi: 10.1093/aje/kwj365 CrossRefPubMedGoogle Scholar
  89. 89.
    Hanna IH, Dawling S, Roodi N et al (2000) Cytochrome P450 1B1 (CYP1B1) pharmacogenetics: association of polymorphisms with functional differences in estrogen hydroxylation activity. Cancer Res 60:3440–3444PubMedGoogle Scholar
  90. 90.
    Wen W, Cai Q, Shu X-O et al (2005) Cytochrome P450 1B1 and catechol-O-methyltransferase genetic polymorphisms and breast cancer risk in Chinese women: results from the shanghai breast cancer study and a meta-analysis. Cancer Epidemiol Biomark Prev 14:329–335CrossRefGoogle Scholar
  91. 91.
    Thomas G, Jacobs KB, Kraft P et al (2009) A multistage genome-wide association study in breast cancer identifies two new risk alleles at 1p11.2 and 14q24.1 (RAD51L1). Nat Genet 41:579–584. doi: 10.1038/ng.353 PubMedCentralCrossRefPubMedGoogle Scholar
  92. 92.
    Turnbull C, Ahmed S, Morrison J et al (2010) Genome-wide association study identifies five new breast cancer susceptibility loci. Nat Genet 42:504–507. doi: 10.1038/ng.586 PubMedCentralCrossRefPubMedGoogle Scholar
  93. 93.
    Reeves GK, Travis RC, Green J et al (2010) Incidence of breast cancer and its subtypes in relation to individual and multiple low-penetrance genetic susceptibility loci. JAMA 304:426–434CrossRefPubMedGoogle Scholar
  94. 94.
    Broeks A, Schmidt MK, Sherman ME et al (2011) Low penetrance breast cancer susceptibility loci are associated with specific breast tumor subtypes: findings from the Breast Cancer Association Consortium. Hum Mol Genet 20:3289–3303. doi: 10.1093/hmg/ddr228 PubMedCentralCrossRefPubMedGoogle Scholar
  95. 95.
    Kim H, Lee J-Y, Sung H et al (2012) A genome-wide association study identifies a breast cancer risk variant in ERBB4 at 2q34: results from the Seoul Breast Cancer Study. Breast Cancer Res 14:R56PubMedCentralCrossRefPubMedGoogle Scholar
  96. 96.
    Glubb DM, Maranian MJ, Michailidou K et al (2015) Fine-scale mapping of the 5q11.2 breast cancer locus reveals at least three independent risk variants regulating MAP3K1. Am J Hum Genet 96:5–20. doi: 10.1016/j.ajhg.2014.11.009 PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Stephen A. Haddad
    • 1
    Email author
  • Kathryn L. Lunetta
    • 2
  • Edward A. Ruiz-Narváez
    • 1
  • Jeannette T. Bensen
    • 3
  • Chi-Chen Hong
    • 4
  • Lara E. Sucheston-Campbell
    • 4
  • Song Yao
    • 4
  • Elisa V. Bandera
    • 5
  • Lynn Rosenberg
    • 1
  • Christopher A. Haiman
    • 6
  • Melissa A. Troester
    • 3
  • Christine B. Ambrosone
    • 4
  • Julie R. Palmer
    • 1
  1. 1.Slone Epidemiology Center at Boston UniversityBostonUSA
  2. 2.Department of BiostatisticsBoston University School of Public HealthBostonUSA
  3. 3.Department of EpidemiologyUniversity of North Carolina at Chapel HillChapel HillUSA
  4. 4.Department of Cancer Prevention and ControlRoswell Park Cancer InstituteBuffaloUSA
  5. 5.Cancer Prevention and ControlRutgers Cancer Institute of New JerseyNew BrunswickUSA
  6. 6.Department of Preventive Medicine, Keck School of MedicineUniversity of Southern California/Norris Comprehensive Cancer CenterLos AngelesUSA

Personalised recommendations