Advertisement

Breast Cancer Research and Treatment

, Volume 153, Issue 3, pp 573–582 | Cite as

Economic impact of 21-gene recurrence score testing on early-stage breast cancer in Ireland

  • Lillian Smyth
  • Geoff Watson
  • Elaine M. Walsh
  • Catherine M. Kelly
  • Maccon Keane
  • M. John Kennedy
  • Liam Grogan
  • Bryan T. Hennessy
  • Seamus O’Reilly
  • Linda E. Coate
  • Miriam O’Connor
  • Cecily Quinn
  • Katharina Verleger
  • Olaf Schoeman
  • Susan O’Reilly
  • Janice M. Walshe
Clinical trial

Abstract

The 21-gene test is a validated multi-gene diagnostic test that predicts chemotherapy (CT) benefit in oestrogen receptor positive (ER+), lymph node-negative (N0) breast cancer (BC) patients (pts). Ireland was the first public health care system to reimburse this test in Europe. Study objectives were to assess the impact of this test on decision-making and to analyse the economic impact of testing. Between October 2011 and February 2013, a national, retrospective, cross-sectional observational study of ER+, N0 BC pts tested with the 21-gene test was conducted. Surveyed breast medical oncologists, provided the assumption for the decision impact analysis that grade (G) 1 pts would not have received CT before testing and G2/3 pts would have received CT before testing. Descriptive statistical analyses were performed. 592 pts were identified; Low, intermediate and high recurrence score were identified in 53, 36 and 10 % pts, respectively. 384 (70 %) pts had G2, 129 (22 %) G3 and 76 (13 %) G1 tumours. Post testing, 345 pts (59 %) experienced a change in CT decision; 339 changed to hormone therapy alone and 6 advised to receive CT. 172 (30 %) pts received CT, 12 (3.9 %) of pts with low scores, 108 (50.9 %) of intermediate risk and 50 (90.9 %) of pts with high risk scores. Net reduction in CT use was 58 % and net savings achieved were €793,565. Since public reimbursement, the introduction of the 21-gene test has resulted in a significant reduction in chemotherapy administration and cost savings for the Irish public healthcare system.

Keywords

Breast cancer Adjuvant chemotherapy Recurrence score Oncotype DX 21-Gene test Economic evaluation 

Notes

Acknowledgments

The data management staff of each cancer centre in Ireland contributed significantly to this work. The authors have disclosed that they have no financial or commercial interests with the manufacturers of any products discussed in this article or their competitors. This article was produced by employees of the Irish health service.

Funding

This study was funded by Genomic health.

Compliance with ethical standards

Conflict of interest

The authors JW and MJK declare consultant roles for Roche and Genomic Health, respectively. The authors KV and OS declare funding from Pharmerit GmbH. All other authors declare that they have no conflict of interest.

References

  1. 1.
    Cancer in Ireland 2013: Annual report of the National Cancer Registry, 2013Google Scholar
  2. 2.
    National Cancer Registry C, Ireland (2012): Breast cancer incidence, mortality, treatment and survival in Ireland: 1994–2009Google Scholar
  3. 3.
    Fisher B, Brown AM, Dimitrov NV, Poisson R, Redmond C, Margolese RG, Bowman D, Wolmark N, Wickerham DL, Kardinal CG et al (1990) Two months of doxorubicin-cyclophosphamide with and without interval reinduction therapy compared with 6 months of cyclophosphamide, methotrexate, and fluorouracil in positive-node breast cancer patients with tamoxifen-nonresponsive tumors: results from the National Surgical Adjuvant Breast and Bowel Project B-15. J Clin Oncol 8(9):1483–1496PubMedGoogle Scholar
  4. 4.
    Shapiro CL, Recht A (2001) Side effects of adjuvant treatment of breast cancer. N Engl J Med 344(26):1997–2008CrossRefPubMedGoogle Scholar
  5. 5.
    Fisher B, Jeong JH, Anderson S, Wolmark N (2004) Treatment of axillary lymph node-negative, estrogen receptor-negative breast cancer: updated findings from National Surgical Adjuvant Breast and Bowel Project clinical trials. J Natl Cancer Inst 96(24):1823–1831CrossRefPubMedGoogle Scholar
  6. 6.
    Fisher B, Jeong JH, Bryant J, Anderson S, Dignam J, Fisher ER, Wolmark N (2004) Treatment of lymph-node-negative, oestrogen-receptor-positive breast cancer: long-term findings from National Surgical Adjuvant Breast and Bowel Project randomised clinical trials. Lancet 364(9437):858–868CrossRefPubMedGoogle Scholar
  7. 7.
    Dignam JJ, Dukic V, Anderson SJ, Mamounas EP, Wickerham DL, Wolmark N (2009) Hazard of recurrence and adjuvant treatment effects over time in lymph node-negative breast cancer. Breast Cancer Res Treat 116(3):595–602PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Markopoulos C (2013) Overview of the use of Oncotype DX((R)) as an additional treatment decision tool in early breast cancer. Expert Rev Anticancer Ther 13(2):179–194CrossRefPubMedGoogle Scholar
  9. 9.
    Fisher B, Dignam J, Wolmark N, DeCillis A, Emir B, Wickerham DL, Bryant J, Dimitrov NV, Abramson N, Atkins JN et al (1997) Tamoxifen and chemotherapy for lymph node-negative, estrogen receptor-positive breast cancer. J Natl Cancer Inst 89(22):1673–1682CrossRefPubMedGoogle Scholar
  10. 10.
    Hornberger J, Cosler LE, Lyman GH (2005) Economic analysis of targeting chemotherapy using a 21-gene RT-PCR assay in lymph-node-negative, estrogen-receptor-positive, early-stage breast cancer. Am J Manag Care 11(5):313–324PubMedGoogle Scholar
  11. 11.
    Palazzi M, De Tomasi D, D’Affronto C, Richetti A, Valli MC, Meregalli S, Asnaghi D, Arienti V, Cavallini D, Pradella R et al (2002) Are international guidelines for the prescription of adjuvant treatment for early breast cancer followed in clinical practice? Results of a population-based study on 1547 patients. Tumori 88(6):503–506PubMedGoogle Scholar
  12. 12.
    Stiggelbout AM, de Haes JCJM, van de Velde CJH (2000) Adjuvant chemotherapy in node negative breast cancer: patterns of use and oncologists’ preferences. Ann Oncol 11(5):631–633CrossRefPubMedGoogle Scholar
  13. 13.
    Nagel G, Rohrig B, Hoyer H, Wedding U, Katenkamp D (2003) A population-based study on variations in the use of adjuvant systemic therapy on postmenopausal patients with early stage breast cancer. J Cancer Res Clin Oncol 129(3):183–191PubMedGoogle Scholar
  14. 14.
    Harlan LC, Abrams J, Warren JL, Clegg L, Stevens J, Ballard-Barbash R (2002) Adjuvant therapy for breast cancer: practice patterns of community physicians. J Clin Oncol 20(7):1809–1817CrossRefPubMedGoogle Scholar
  15. 15.
    Barron JJ, Quimbo R, Nikam PT, Amonkar MM (2008) Assessing the economic burden of breast cancer in a US managed care population. Breast Cancer Res Treat 109(2):367–377CrossRefPubMedGoogle Scholar
  16. 16.
    Broekx S, Den Hond E, Torfs R, Remacle A, Mertens R, D’Hooghe T, Neven P, Christiaens MR, Simoens S (2011) The costs of breast cancer prior to and following diagnosis. Eur J Health Econ 12(4):311–317CrossRefPubMedGoogle Scholar
  17. 17.
    Dowsett M, Goldhirsch A, Hayes DF, Senn HJ, Wood W, Viale G (2007) International Web-based consultation on priorities for translational breast cancer research. Breast Cancer Res 9(6):R81PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, Baehner FL, Walker MG, Watson D, Park T et al (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351(27):2817–2826CrossRefPubMedGoogle Scholar
  19. 19.
    Paik S, Tang G, Shak S, Kim C, Baker J, Kim W, Cronin M, Baehner FL, Watson D, Bryant J et al (2006) Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol 24(23):3726–3734CrossRefPubMedGoogle Scholar
  20. 20.
    Eiermann W, Rezai M, Kummel S, Kuhn T, Warm M, Friedrichs K, Schneeweiss A, Markmann S, Eggemann H, Hilfrich J et al (2013) The 21-gene recurrence score assay impacts adjuvant therapy recommendations for ER-positive, node-negative and node-positive early breast cancer resulting in a risk-adapted change in chemotherapy use. Ann Oncol 24(3):618–624PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Brufsky AM (2014) Predictive and prognostic value of the 21-gene recurrence score in hormone receptor-positive, node-positive breast cancer. Am J Clin Oncol 37(4):404–410PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Asad J, Jacobson AF, Estabrook A, Smith SR, Boolbol SK, Feldman SM, Osborne MP, Boachie-Adjei K, Twardzik W, Tartter PI (2008) Does oncotype DX recurrence score affect the management of patients with early-stage breast cancer? Am J Surg 196(4):527–529CrossRefPubMedGoogle Scholar
  23. 23.
    Lo SS, Mumby PB, Norton J, Rychlik K, Smerage J, Kash J, Chew HK, Gaynor ER, Hayes DF, Epstein A et al (2010) Prospective multicenter study of the impact of the 21-gene recurrence score assay on medical oncologist and patient adjuvant breast cancer treatment selection. J Clin Oncol 28(10):1671–1676CrossRefPubMedGoogle Scholar
  24. 24.
    Oratz R, Paul D, Cohn AL, Sedlacek SM (2007) Impact of a commercial reference laboratory test recurrence score on decision making in early-stage breast cancer. J Oncol Pract 3(4):182–186PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Albanell J GJ, Holt S, Blohmer J, Eiermann W, Svedman C (2011) Meta-analysis of Prospective European Studies Assessing the Impact of Using the 21-Gene Recurrence Score Assay on Clinical Decision Making in Women with ER-positive, HER2-negative Early Stage Breast Cancer Presented at the San Antonio Breast Cancer Symposium (SABCS) San Antonio, TX, 6-10 Dec, 2011Google Scholar
  26. 26.
    Hornberger J, Chien R (2010) Abstract P2-09-06: meta-analysis of the decision impact of the 21-gene breast cancer Recurrence Score in clinical practice. Cancer Res 70:P2-09-06Google Scholar
  27. 27.
    Albanell J, Gonzalez A, Ruiz-Borrego M, Alba E, Garcia-Saenz JA, Corominas JM, Burgues O, Furio V, Rojo A, Palacios J et al (2012) Prospective transGEICAM study of the impact of the 21-gene Recurrence Score assay and traditional clinicopathological factors on adjuvant clinical decision making in women with estrogen receptor-positive (ER+) node-negative breast cancer. Ann Oncol 23(3):625–631CrossRefPubMedGoogle Scholar
  28. 28.
    Yamauchi H, Nakagawa C, Takei H, Chao C, Yoshizawa C, Yagata H, Yoshida A, Hayashi N, Hell S, Nakamura S (2014) Prospective study of the effect of the 21-gene assay on adjuvant clinical decision-making in Japanese women with estrogen receptor-positive, node-negative, and node-positive breast cancer. Clin Breast Cancer 14(3):191–197CrossRefPubMedGoogle Scholar
  29. 29.
    Klang SH, Hammerman A, Liebermann N, Efrat N, Doberne J, Hornberger J (2010) Economic implications of 21-gene breast cancer risk assay from the perspective of an Israeli-managed health-care organization. Value Health 13(4):381–387CrossRefPubMedGoogle Scholar
  30. 30.
    Tsoi DT, Inoue M, Kelly CM, Verma S, Pritchard KI (2010) Cost-effectiveness analysis of recurrence score-guided treatment using a 21-gene assay in early breast cancer. Oncologist 15(5):457–465PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Kondo M, Hoshi SL, Yamanaka T, Ishiguro H, Toi M (2011) Economic evaluation of the 21-gene signature (Oncotype DX) in lymph node-negative/positive, hormone receptor-positive early-stage breast cancer based on Japanese validation study (JBCRG-TR03). Breast Cancer Res Treat 127(3):739–749CrossRefPubMedGoogle Scholar
  32. 32.
    Ireland NCfPN: Cost-effectiveness of Oncotype DX® to target chemotherapy use in lymph-node-negative, oestrogen-receptor-positive, early-stage breast cancer in Ireland. July 2011Google Scholar
  33. 33.
    Hornberger J, Chien R, Krebs K, Hochheiser L (2011) US insurance program’s experience with a multigene assay for early-stage breast cancer. J Oncol Pract 7(3 Suppl):e38s–e45sPubMedCentralPubMedGoogle Scholar
  34. 34.
    McGuire WL (1991) Breast cancer prognostic factors: evaluation guidelines. J Natl Cancer Inst 83(3):154–155CrossRefPubMedGoogle Scholar
  35. 35.
    McGuire WL, Clark GM (1992) Prognostic factors and treatment decisions in axillary-node-negative breast cancer. N Engl J Med 326(26):1756–1761CrossRefPubMedGoogle Scholar
  36. 36.
    Fisher B, Redmond C, Fisher ER, Caplan R (1988) Relative worth of estrogen or progesterone receptor and pathologic characteristics of differentiation as indicators of prognosis in node negative breast cancer patients: findings from National Surgical Adjuvant Breast and Bowel Project Protocol B-06. J Clin Oncol 6(7):1076–1087PubMedGoogle Scholar
  37. 37.
    Nguyen MT, Stessin A, Nagar H, D’Alfonso TM, Chen Z, Cigler T, Hayes MK, Shin SJ (2014) Impact of oncotype DX recurrence score in the management of breast cancer cases. Clin Breast Cancer 14(3):182–190CrossRefPubMedGoogle Scholar
  38. 38.
    Oratz R, Kim B, Chao C, Skrzypczak S, Ory C, Bugarini R, Broder M (2011) Physician survey of the effect of the 21-gene recurrence score assay results on treatment recommendations for patients with lymph node-positive, estrogen receptor-positive breast cancer. J Oncol Pract 7(2):94–99PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Holt S, Bertelli G, Humphreys I, Valentine W, Durrani S, Pudney D, Rolles M, Moe M, Khawaja S, Sharaiha Y et al (2013) A decision impact, decision conflict and economic assessment of routine Oncotype DX testing of 146 women with node-negative or pNImi, ER-positive breast cancer in the U.K. Br J Cancer 108(11):2250–2258PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Fried G, Moskovitz M (2014) Treatment decisions in estrogen receptor-positive early breast cancer patients with intermediate oncotype DX recurrence score results. SpringerPlus 3:71PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
  42. 42.
    Bayt T BE, Rothney M, Sing AP. The 21-Gene Breast Cancer Assay: a roadmap of clinical evidence. In Abstract P248. St. Gallen International Breast Cancer Conference—Vienna, Austria, 2015Google Scholar
  43. 43.
    Jaafar H et al (2014) Impact of Oncotype DX testing on adjuvant treatment decisions in patients with early breast cancer: a single-center study in the United Arab Emirates. Asia Pac J Clin Oncol 10(4):354–360CrossRefPubMedGoogle Scholar
  44. 44.
    Ademuyiwa FO, Miller A, O’Connor T, Edge SB, Thorat MA, Sledge GW, Levine E, Badve S (2011) The effects of oncotype DX recurrence scores on chemotherapy utilization in a multi-institutional breast cancer cohort. Breast Cancer Res Treat 126(3):797–802CrossRefPubMedGoogle Scholar
  45. 45.
    Joh JE, Esposito NN, Kiluk JV, Laronga C, Lee MC, Loftus L, Soliman H, Boughey JC, Reynolds C, Lawton TJ et al (2011) The effect of Oncotype DX recurrence score on treatment recommendations for patients with estrogen receptor-positive early stage breast cancer and correlation with estimation of recurrence risk by breast cancer specialists. Oncologist 16(11):1520–1526PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    de Boer RH, Baker C, Speakman D, Chao CY, Yoshizawa C, Mann GB (2013) The impact of a genomic assay (Oncotype DX) on adjuvant treatment recommendations in early breast cancer. Med J Aust 199(3):205–208CrossRefPubMedGoogle Scholar
  47. 47.
    McVeigh TP, Hughes LM, Miller N, Sheehan M, Keane M, Sweeney KJ, Kerin MJ (2014) The impact of Oncotype DX testing on breast cancer management and chemotherapy prescribing patterns in a tertiary referral centre. Eur J Cancer (Oxford, England: 1990) 50(16):2763–2770CrossRefGoogle Scholar
  48. 48.
    Bargallo JE, Lara F, Shaw-Dulin R, Perez-Sanchez V, Villarreal-Garza C, Maldonado-Martinez H, Mohar-Betancourt A, Yoshizawa C, Burke E, Decker T et al (2015) A study of the impact of the 21-gene breast cancer assay on the use of adjuvant chemotherapy in women with breast cancer in a Mexican public hospital. J Surg Oncol 111(2):203–207CrossRefPubMedGoogle Scholar
  49. 49.
    Bodmer A HA, Diebold Berger S, Favet L, Guetty Alberto M, Exquis B. Abstract P241. St. Gallen International Breast Cancer Conference—Vienna, Austria 2015: Usefulness of the 21-Gene Assay to Guide Adjuvant Chemotherapy Decision-Making: Geneva ExperienceGoogle Scholar
  50. 50.
    Davidson JA, Cromwell I, Ellard SL, Lohrisch C, Gelmon KA, Shenkier T, Villa D, Lim H, Sun S, Taylor S et al (2013) A prospective clinical utility and pharmacoeconomic study of the impact of the 21-gene Recurrence Score(R) assay in oestrogen receptor positive node negative breast cancer. Eur J Cancer (Oxford, England : 1990) 49(11):2469–2475CrossRefGoogle Scholar
  51. 51.
    Rouzier R, Pronzato P, Chéreau E, Carlson J, Hunt B, Valentine WJ (2013) Multigene assays and molecular markers in breast cancer: systematic review of health economic analyses. Breast Cancer Res Treat 139(3):621–637PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    Bargallo-Rocha JE, Lara-Medina F, Perez-Sanchez V, Vazquez-Romo R, Villarreal-Garza C, Martinez-Said H, Shaw-Dulin RJ, Mohar-Betancourt A, Hunt B, Plun-Favreau J et al (2015) Cost-effectiveness of the 21-gene breast cancer assay in Mexico. Adv Ther 32(3):239–253CrossRefPubMedGoogle Scholar
  53. 53.
    Lamond NW, Skedgel C, Younis T (2013) Is the 21-gene recurrence score a cost-effective assay in endocrine-sensitive node-negative breast cancer? Expert Rev Pharmacoecon Outcomes Res 13(2):243–250CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Lillian Smyth
    • 1
  • Geoff Watson
    • 1
  • Elaine M. Walsh
    • 2
  • Catherine M. Kelly
    • 2
  • Maccon Keane
    • 2
  • M. John Kennedy
    • 2
  • Liam Grogan
    • 2
  • Bryan T. Hennessy
    • 2
  • Seamus O’Reilly
    • 2
  • Linda E. Coate
    • 2
  • Miriam O’Connor
    • 2
  • Cecily Quinn
    • 3
  • Katharina Verleger
    • 4
  • Olaf Schoeman
    • 4
  • Susan O’Reilly
    • 5
  • Janice M. Walshe
    • 1
    • 2
  1. 1.Medical Oncology DepartmentSt Vincent’s University HospitalDublin 4Ireland
  2. 2.All-Ireland Co-operative Oncology Research GroupDublin 2Ireland
  3. 3.Department of HistopathologySt Vincent’s Healthcare GroupDublin 4Ireland
  4. 4.Pharmerit GmbHBerlinGermany
  5. 5.National Cancer Control Programme (NCCP)DublinIreland

Personalised recommendations