Advertisement

Breast Cancer Research and Treatment

, Volume 153, Issue 2, pp 323–335 | Cite as

Adipocytes can induce epithelial-mesenchymal transition in breast cancer cells

  • YuKyung Lee
  • Woo Hee Jung
  • Ja Seung KooEmail author
Preclinical Study

Abstract

Adipocytes are known to be involved in epithelial-mesenchymal transition (EMT) in several cancers. However, the role of adipocytes in the EMT of breast cancer cells is poorly understood. The purpose of this study was to investigate the involvement of adipocytes in the EMT in breast cancer. Breast cancer cell lines MCF-7, MDA-MB-453, MDA-MB-435S, MDA-MB-231, and MDA-MB-468 were co-cultured with adipocytes and analyzed for morphological changes, proliferation activity, EMT markers, migration, and invasion. In addition, 296 human breast cancer specimens were classified according to the presence of the fibrous or adipose stroma and analyzed by immunohistochemistry for the expression of estrogen and progesterone receptors, human epidermal growth factor receptor 2, antigen Ki-67, N-cadherin, Twist-related protein 1 (TWIST1), high-mobility group AT-hook 2, TGFβ, and S100 calcium-binding protein A4 using tissue microarray. After co-culture with adipocytes, MCF-7, MDA-MB-435S, and MDA-MB-231 cells exhibited elongated spindle-like morphology and increased proliferation; MDA-MB-435S and MDA-MB-231 cells also showed increased dispersion. In all tested breast cancer cells, adipocytes induced migration and invasion. The EMT-like phenotypic changes and increased cell migration and invasion were accompanied by the upregulation of matrix metallopeptidase 9 and TWIST1. Consistently, breast cancer tumors with the adipose stroma showed higher TWIST1 expression than those with the adipose stroma; however, no difference was observed in the levels of other EMT-related proteins. Adipocytes stimulate breast cancer cells to acquire aggressive tumor phenotype by inducing EMT-associated traits, and breast cancer with the adipose stroma expresses EMT markers as breast cancer with the fibrous stroma.

Keywords

Adipocytes Breast cancer Epithelial-mesenchymal transition Stroma 

Notes

Acknowledgments

This study was supported by a grant from the National R&D Program for Cancer Control, Ministry of Health & Welfare, Republic of Korea (1420080). This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2015R1A1A1A05001209).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10549_2015_3550_MOESM1_ESM.doc (26 kb)
Supplementary material 1 (DOC 25 kb)

References

  1. 1.
    Duband JL, Monier F, Delannet M et al (1995) Epithelium-mesenchyme transition during neural crest development. Acta Anat (Basel) 154(1):63–78CrossRefGoogle Scholar
  2. 2.
    Kalluri R, Neilson EG (2003) Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Investig 112(12):1776–1784. doi: 10.1172/jci20530 PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Thiery JP (2002) Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2(6):442–454. doi: 10.1038/nrc822 CrossRefPubMedGoogle Scholar
  4. 4.
    Hay ED (1995) An overview of epithelio-mesenchymal transformation. Acta Anat (Basel) 154(1):8–20CrossRefGoogle Scholar
  5. 5.
    Lee JM, Dedhar S, Kalluri R et al (2006) The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol 172(7):973–981. doi: 10.1083/jcb.200601018 PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 7(2):131–142. doi: 10.1038/nrm1835 CrossRefPubMedGoogle Scholar
  7. 7.
    Blick T, Widodo E, Hugo H et al (2008) Epithelial mesenchymal transition traits in human breast cancer cell lines. Clin Exp Metastasis 25(6):629–642. doi: 10.1007/s10585-008-9170-6 CrossRefPubMedGoogle Scholar
  8. 8.
    Sarrio D, Rodriguez-Pinilla SM, Hardisson D et al (2008) Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res 68(4):989–997. doi: 10.1158/0008-5472.can-07-2017 CrossRefPubMedGoogle Scholar
  9. 9.
    Mani SA, Guo W, Liao MJ et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133(4):704–715. doi: 10.1016/j.cell.2008.03.027 PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Morel AP, Lievre M, Thomas C et al (2008) Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS ONE 3(8):e2888. doi: 10.1371/journal.pone.0002888 PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Debies MT, Gestl SA, Mathers JL et al (2008) Tumor escape in a Wnt1-dependent mouse breast cancer model is enabled by p19Arf/p53 pathway lesions but not p16 Ink4a loss. J Clin Investig 118(1):51–63. doi: 10.1172/jci33320 PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Moody SE, Perez D, Pan TC et al (2005) The transcriptional repressor snail promotes mammary tumor recurrence. Cancer Cell 8(3):197–209. doi: 10.1016/j.ccr.2005.07.009 CrossRefPubMedGoogle Scholar
  13. 13.
    Yu Y, Xiao CH, Tan LD et al (2014) Cancer-associated fibroblasts induce epithelial-mesenchymal transition of breast cancer cells through paracrine TGF-beta signalling. Br J Cancer 110(3):724–732. doi: 10.1038/bjc.2013.768 PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Kushiro K, Chu RA, Verma A et al (2012) Adipocytes promote B16BL6 melanoma cell invasion and the epithelial-to-mesenchymal transition. Cancer Microenviron 5(1):73–82. doi: 10.1007/s12307-011-0087-2 PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Sadowski HB, Wheeler TT, Young DA (1992) Gene expression during 3T3-L1 adipocyte differentiation. Characterization of initial responses to the inducing agents and changes during commitment to differentiation. J Biol Chem 267(7):4722–4731PubMedGoogle Scholar
  16. 16.
    Kim S, Lee Y, Koo JS (2015) Differential expression of lipid metabolism-related proteins in different breast cancer subtypes. PLoS ONE 10(3):e0119473. doi: 10.1371/journal.pone.0119473 PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Hammond ME, Hayes DF, Dowsett M et al (2010) American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer (unabridged version). Arch Pathol Lab Med 134(7):e48–e72. doi: 10.1043/1543-2165-134.7.e48 PubMedGoogle Scholar
  18. 18.
    Wolff AC, Hammond ME, Hicks DG et al (2013) Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol 31(31):3997–4013. doi: 10.1200/jco.2013.50.9984 CrossRefPubMedGoogle Scholar
  19. 19.
    Henry LR, Lee HO, Lee JS et al (2007) Clinical implications of fibroblast activation protein in patients with colon cancer. Clin Cancer Res 13(6):1736–1741. doi: 10.1158/1078-0432.ccr-06-1746 CrossRefPubMedGoogle Scholar
  20. 20.
    Luo Y, Lan L, Jiang YG et al (2013) Epithelial-mesenchymal transition and migration of prostate cancer stem cells is driven by cancer-associated fibroblasts in an HIF-1alpha/beta-catenin-dependent pathway. Mol Cells 36(2):138–144. doi: 10.1007/s10059-013-0096-8 PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Taki M, Higashikawa K, Yoneda S et al (2008) Up-regulation of stromal cell-derived factor-1alpha and its receptor CXCR4 expression accompanied with epithelial-mesenchymal transition in human oral squamous cell carcinoma. Oncol Rep 19(4):993–998PubMedGoogle Scholar
  22. 22.
    Zhou B, Chen WL, Wang YY et al (2014) A role for cancer-associated fibroblasts in inducing the epithelial-to-mesenchymal transition in human tongue squamous cell carcinoma. J Oral Pathol Med 43(8):585–592. doi: 10.1111/jop.12172 CrossRefPubMedGoogle Scholar
  23. 23.
    Dirat B, Bochet L, Dabek M et al (2011) Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res 71(7):2455–2465. doi: 10.1158/0008-5472.can-10-3323 CrossRefPubMedGoogle Scholar
  24. 24.
    Bochet L, Lehuede C, Dauvillier S et al (2013) Adipocyte-derived fibroblasts promote tumor progression and contribute to the desmoplastic reaction in breast cancer. Cancer Res 73(18):5657–5668. doi: 10.1158/0008-5472.can-13-0530 CrossRefPubMedGoogle Scholar
  25. 25.
    Ogunwobi OO, Liu C (2012) Therapeutic and prognostic importance of epithelial-mesenchymal transition in liver cancers: insights from experimental models. Crit Rev Oncol Hematol 83(3):319–328. doi: 10.1016/j.critrevonc.2011.11.007 CrossRefPubMedGoogle Scholar
  26. 26.
    Sawyer EJ, Hanby AM, Ellis P et al (2000) Molecular analysis of phyllodes tumors reveals distinct changes in the epithelial and stromal components. Am J Pathol 156(3):1093–1098. doi: 10.1016/s0002-9440(10)64977-2 PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Wallerand H, Robert G, Pasticier G et al (2010) The epithelial-mesenchymal transition-inducing factor TWIST is an attractive target in advanced and/or metastatic bladder and prostate cancers. Urol Oncol 28(5):473–479. doi: 10.1016/j.urolonc.2008.12.018 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Pathology, Severance HospitalYonsei University College of MedicineSeoulSouth Korea

Personalised recommendations