Advertisement

Breast Cancer Research and Treatment

, Volume 152, Issue 3, pp 509–518 | Cite as

Fat/water ratios measured with diffuse reflectance spectroscopy to detect breast tumor boundaries

  • L. L. de BoerEmail author
  • B. G. Molenkamp
  • T. M. Bydlon
  • B. H. W. Hendriks
  • J. Wesseling
  • H. J. C. M. Sterenborg
  • T. J. M. Ruers
Preclinical Study

Abstract

Recognition of the tumor during breast-conserving surgery (BCS) can be very difficult and currently a robust method of margin assessment for the surgical setting is not available. As a result, tumor-positive margins, which require additional treatment, are not found until histopathologic evaluation. With diffuse reflectance spectroscopy (DRS), tissue can be characterized during surgery based on optical parameters that are related to the tissue morphology and composition. Here we investigate which optical parameters are able to detect tumor in an area with a mixture of benign and tumor tissue and hence which parameters are most suitable for intra-operative margin assessment. DRS spectra (400–1600 nm) were obtained from 16 ex vivo lumpectomy specimens from benign, tumor border, and tumor tissue. One mastectomy specimen was used with a custom-made grid for validation purposes. The optical parameter related to the absorption of fat and water (F/W-ratio) in the extended near-infrared wavelength region (~1000–1600 nm) provided the best discrimination between benign and tumor sites resulting in a sensitivity and specificity of 100 % (excluding the border sites). Per patient, the scaled F/W-ratio gradually decreased from grossly benign tissue towards the tumor in 87.5 % of the specimens. In one test case, based on a predefined F/W-ratio for boundary tissue of 0.58, DRS produced a surgical resection plane that nearly overlapped with a 2-mm rim of benign tissue, 2 mm being the most widely accepted definition of a negative margin. The F/W-ratio provided excellent discrimination between sites clearly inside or outside the tumor and was able to detect the border of the tumor in one test case. This work shows the potential for DRS to guide the surgeon during BCS.

Keywords

Diffuse reflectance spectroscopy (DRS) Resection margins Breast cancer Near-infra red (NIR) 

Notes

Acknowledgments

We would like to thank the NKI pathology department for their help in the collection of the data as well as the Philips Research project members for their contribution. We also thank Jarich Spliethoff and Jasper Nijkamp for their valuable feedback. This work was supported by Philips Research, Eindhoven, The Netherlands.

Compliance with Ethical Standards

Conflict of interest

This study was supported by Philips Research, Eindhoven, Netherlands. The authors who are affiliated with Philips Research only have financial interests in the subject matter, materials, and equipment, in the sense that they are an employee of Philips. None of the other authors have any financial relationship with Philips Research or conflict of interests.

Ethical standards

This study complies with the current laws of the Netherlands.

References

  1. 1.
    Curran D, van Dongen JP, Aaronson NK, Kiebert G, Fentiman IS, Mignolet F, Bartelink H (1998) Quality of live of early-stage breast cancer patients treated with radical mastectomy or breast-conserving procedures: results of EORTC Trial 10801. Eur J Cancer 34(3):307–314CrossRefPubMedGoogle Scholar
  2. 2.
    Al-Ghazal SK, Fallowfield L, Blamey RW (2000) Comparison of psychological aspects and patient satisfaction following breast conserving surgery, simple mastectomy and breast reconstruction. Eur J Cancer 36:1938–1943CrossRefPubMedGoogle Scholar
  3. 3.
    Park CC, Mitsumori M, Nixon A, Recht A, Connolly J, Gelman R, Silver B, Hetelekidis S, Abner A, Harris JR, Schnitt SJ (2000) Outcome at 8 Years after breast-conserving surgery and radiation therapy for invasive breast cancer: influence of margin status and systemic therapy on local recurrence. J Clin Oncol 18(8):1668–1675PubMedGoogle Scholar
  4. 4.
    Fisher B, Anderson S, Bryant J, Margolese RG, Deutsch M, Fisher ER, Jeong J-H, Wolmark N (2002) Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. N Engl J Med 347(16):1233–1241CrossRefPubMedGoogle Scholar
  5. 5.
    Van Dongen JA, Voogd AC, Fentiman IS, Legrand C, Sylvester RJ, Tong D, Van der Schueren E, Helle PA, Van Zijl K, Bartelink H (2000) Long-term results of a randomized trial comparing breast-conserving therapy with mastectomy: european organization for research and treatment of cancer 10801 trial. J Natl Cancer Inst 92(14):1143–1150CrossRefPubMedGoogle Scholar
  6. 6.
    Poggi MM, Danforth DN, Sciuto LC, Smith SL, Steinberg SM, Liewehr DJ, Menard C, Lippman ME, Lichter AS, Altemus RM (2003) Eighteen-year results in the treatment of early breast carcinoma with mastectomy versus breast conservation therapy. Cancer 98:697–702. doi: 10.1002/cncr.11580 CrossRefPubMedGoogle Scholar
  7. 7.
    Houssami N, Macaskill P, Marinovich ML, Morrow M (2014) The association of surgical margins and local recurrence in women with early-stage invasive breast cancer treated with breast-conserving therapy: a meta-analysis. Ann Surg Oncol 21:717–730. doi: 10.1245/s10434-014-3480-5 CrossRefPubMedGoogle Scholar
  8. 8.
    Veronesi U, Cascinelli N, Mariani L, Greco M, Saccozzi R, Luini A, Aguilar M, Marubini E (2002) Twenty-year follow-up of a randomized study comparing breast-conserving surgery with radical mastectomy for early breast cancer. N Engl J Med 347(16):1227–1232CrossRefPubMedGoogle Scholar
  9. 9.
    Singletary SE (2002) Surgical margins in patients with early-stage breast cancer treated with breast conservation therapy. Am J Surg 184:383–393CrossRefPubMedGoogle Scholar
  10. 10.
    Morrow M, Strom EA, Bassett LW, Dershaw DD, Fowble B, Guiliano A, Harris JR, O’Malley F, Schnitt SJ, Singletary SE, Winchester DP (2002) Standard for breast conservation therapy in the management of invasive breast carcinoma. CA Cancer J Clin 52(5):277–300CrossRefPubMedGoogle Scholar
  11. 11.
    McCahill LE, Single RM, Aiello Bowles EJ, Feigelson HS, James TA, Barney T, Engel JM, Onitilo AA (2012) Variability in reexcision following breast conservation surgery. JAMA 307(5):467–475CrossRefPubMedGoogle Scholar
  12. 12.
    Waljee JF, Hu ES, Newman LA, Alderman AK (2008) Predictors of re-excision among women undergoing breast-conserving surgery for cancer. Ann Surg Oncol 15(5):1297–1303. doi: 10.1245/s10434-007-9777-x CrossRefPubMedGoogle Scholar
  13. 13.
    Jeevan R, Cromwell DA, Trivella M, Lawrence G, Kearins O, Pereira J, Sheppard C, Caddy CM, van der Meulen JHP (2012) Reoperation rates after breast conserving surgery for breast cancer among women in England: retrospective study of hospital episode statistics. BMJ 345:e4505. doi: 10.1136/bmj.e4505 PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Lovrics PJ, Cornacchi SD, Farrokhyar F, Garnett A, Chen V, Franic S, Simunovic M (2010) Technical factors, surgeon case volume and positive margin rates after breast conservation surgery for early-stage breast cancer. Can J Surg 53(5):305–312PubMedCentralPubMedGoogle Scholar
  15. 15.
    Klimberg VS, Harms S, Korourian S (1999) Assessing margin status. Surg Oncol 8:77–84CrossRefPubMedGoogle Scholar
  16. 16.
    Morrow M (2008) Margins in breast-conserving therapy have we lost sight of the big picture. Expert Rev Anticancer Ther 8(8):1193–1196CrossRefPubMedGoogle Scholar
  17. 17.
    Cabioglu N, Hunt KK, Sahin AA, Kuerer HM, Babiera GV, Singletary SE, Whitman GJ, Ross MI, Ames FC, Feig BW, Buchholz TA, Meric-Bernstam F (2007) Role for intraoperative margin assessment in patients undergoing breast-conserving surgery. Ann Surg Oncol 14(4):1458–1471. doi: 10.1245/s10434-006-9236-0 CrossRefPubMedGoogle Scholar
  18. 18.
    Azu M, Abrahamse P, Katz SJ, Jagsi R, Morrow M (2010) What is an adequate margin for breast-conserving surgery? surgeon attitudes and correlates. Ann Surg Oncol 17:558–563. doi: 10.1245/s10434-009-0765-1 PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Blair SL, Thompson K, Rococco J, Malcarne V, Beitsch PD, Ollila DW (2009) Attaining negative margins in breast-conservation operations: is there a consensus among breast surgeons? J Am Coll Surg 209(5):608–613. doi: 10.1016/j.jamcollsurg.2009.07.026 CrossRefPubMedGoogle Scholar
  20. 20.
    Moran MS, Schnitt SJ, Guiliano AE, Harris JR, Khan SA, Horton J, Klimberg S, Chavez-MacGregor M, Freedman G, Houssami N, Johnson PL, Morrow M (2014) Society of surgical oncology—American Society for Radiation oncology consensus guideline on margins for breast-conserving surgery with whole-breast irradiation in stages I and II invasive breast cancer. Int J Radiat Oncol Biol Phys 88(3):553–564CrossRefPubMedGoogle Scholar
  21. 21.
    Houssami N, Macaskill P, Marinovich ML, Dixon JM, Irwig L, Brennan ME, Solin LJ (2010) Meta-analysis of the impact of surgical margins on local recurrence in women with early-stage invasive breast cancer treated with breast-conserving therapy. Eur J Cancer 46:3219–3232CrossRefPubMedGoogle Scholar
  22. 22.
    Esbona K, Li Z, Wilke LG (2012) Intraoperative imprint cytology and frozen section pathology for margin assessment in breast conservation surgery: a systematic review. Ann Surg Oncol 19(10):3236–3245. doi: 10.1245/s10434-012-2492-2 PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Khan SA, Eladoumikdachi F (2010) Optimal surgical treatment of breast cancer: implications for local control and survival. J Surg Oncol 101(8):677–686. doi: 10.1002/jso.21502 CrossRefPubMedGoogle Scholar
  24. 24.
    Sabel MS (2011) Surgical considerations in early-stage breast cancer: lessons learned and future directions. Semin Radiat Oncol 21:10–19. doi: 10.1016/j.semradonc.2010.08.002 CrossRefPubMedGoogle Scholar
  25. 25.
    Bakhshandeh M, Tutuncuoglu O, Fischer G, Masood S (2007) Use of imprint cytology for assessment of surgical margins in lumpectomy specimens of breast cancer patients. Diagn Cytopathol 35(10):656–659CrossRefPubMedGoogle Scholar
  26. 26.
    Holder KN, Yeh I-T (2010) Intraoperative evaluation of margin status. Pathol Case Rev 15(5):148–155. doi: 10.1097/PCR.0b013e3181f66188 CrossRefGoogle Scholar
  27. 27.
    Schnabel F, Boolbol SK, Gittleman M, Karni T, Tafra L, Feldman S, Police A, Friedman NB, Karlan S, Holmes D, Willey SC, Carmon M, Fernandez K, Akbari S, Harness J, Guerra L, Frazier T, Lane K, Simmons RM, Estabrook A, Allweis T (2014) A randomized prospective study of lumpectomy margin assessment with use of marginprobe in patients with nonpalpable breast malignancies. Ann Surg Oncol 21:1589–1595. doi: 10.1245/s10434-014-3602-0 PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Zhu C, Palmer GM, Breslin TM, Harter J, Ramanujam N (2006) Diagnosis of breast cancer using diffuse reflectance spectroscopy: comparison of a monte carlo versus partial least squares analysis based feature extraction technique. Lasers Surg Med 38(7):714–724. doi: 10.1002/lsm.20356 CrossRefPubMedGoogle Scholar
  29. 29.
    Zhu C, Palmer GM, Breslin TM, Harter J, Ramanujam N (2008) Diagnosis of breast cancer using fluorescence and diffuse reflectance spectroscopy: a Monte-Carlo-model-based approach. J Biomed Opt 13(3):034015. doi: 10.1117/1.2931078 PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Brown JQ, Bydlon TM, Richards LM, Yu B, Kennedy SA, Geradts J, Wilke LG, Junker M, Gallagher J, Barry W, Ramanujam N (2010) Optical assessment of tumor resection margins in the breast. IEEE J Sel Top Quantum Electron 16(3):530–544PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Brown JQ, Bydlon TM, Kennedy SA, Caldwell ML, Gallagher JE, Junker M, Wilke LG, Barry WT, Geradts J, Ramanujam N (2013) Optical spectral surveillance of breast tissue landscapes for detection of residual disease in breast tumor margins. PLoS ONE 8(7):e69906. doi: 10.1371/journal.pone.0069906 PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Kennedy S, Geradts J, Bydlon T, Brown JQ, Gallagher J, Junker M, Barry W, Ramanujam N, Wilke L (2010) Optical breast cancer margin assessment: an observational study of the effects of tissue heterogeneity on optical contrast. Breast Cancer Res 12(6):R91. doi: 10.1186/bcr2770 PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Evers DJ, Nachabe R, Vranken Peeters MJ, van der Hage JA, Oldenburg HS, Rutgers EJ, Lucassen GW, Hendriks BHW, Wesseling J, Ruers TJM (2013) Diffuse reflectance spectroscopy: towards clinical application in breast cancer. Breast Cancer Res Treat 137(1):155–165. doi: 10.1007/s10549-012-2350-8 CrossRefPubMedGoogle Scholar
  34. 34.
    Volynskaya Z, Haka AS, Bechtel KL, Fitzmaurice M, Shenk R, Wang N, Nazemi J, Dasari RR, Feld MS (2008) Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy. J Biomed Opt 13(2):024012. doi: 10.1117/1.2909672 CrossRefPubMedGoogle Scholar
  35. 35.
    Haka AS, Volynskaya Z, Gardecki JA, Nazemi J, Lyons J, Hicks D, Fitzmaurice M, Dasari RR, Crowe JP, Feldman SM (2006) In vivo margin assessment during partial mastectomy breast surgery using Raman spectroscopy. Cancer Res 66(6):3317–3322. doi: 10.1158/0008-5472.CAN-05-2815 CrossRefPubMedGoogle Scholar
  36. 36.
    Keller MD, Vargis E, de Matos Granja N, Wilson RH, Mycek M-A, Kelley MC, Mahadevan-Jansen A (2011) Development of a spatially offset Raman spectroscopy probe for breast tumor surgical margin evaluation. J Biomed Opt 16(7):077006. doi: 10.1117/1.3600708 PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Bigio IJ, Bown SG, Briggs G, Kelley C, Lakhani S, Pickard D, Ripley PM, Rose IG, Saunders C (2000) Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results. J Biomed Opt 5(2):221–228CrossRefPubMedGoogle Scholar
  38. 38.
    Majumder SK, Keller MD, Boulos FI, Kelley MC, Mahadevan-Jansen A (2008) Comparison of autofluorescence, diffuse reflectance, and Raman spectroscopy for breast tissue discrimination. J Biomed Opt 13(5):054009. doi: 10.1117/1.2975962 CrossRefPubMedGoogle Scholar
  39. 39.
    Laughney AM, Krishnaswamy V, Rizzo EJ, Schwab MC, Barth RJ Jr, Cuccia DJ, Tromberg B, Paulsen KD, Pogue BW, Wells WA (2013) Spectral discrimination of breast pathologies in situ using spatial frequency domain imaging. Breast Cancer Res 15:R61PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Nachabé R, Hendriks BHW, Van der Voort M, Dejardins AE, Sterenborg HJCM (2010) Estimation of biological chromophores using diffuse optical spectroscopy: benefit of extending the UV-VIS wavelength range to include 1000 to 1600 nm. Opt Express 18(24):1432–1442CrossRefGoogle Scholar
  41. 41.
    Farrell TJ, Patterson MS, Wilson B (1992) A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo. Med Phys 19(4):879–888CrossRefPubMedGoogle Scholar
  42. 42.
    Nachabé R, Hendriks BHW, Desjardins AE, van der Voort M, van der Mark MB, Sterenborg HJCM (2010) Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1600 nm. J Biomed Opt 15(3):037015. doi: 10.1117/1.3454392 CrossRefPubMedGoogle Scholar
  43. 43.
    Shults J, Ratcliffe SJ (2009) Analysis of multi-level correlated data in the framework of generalized estimating equations via xtmultcorr procedures in Stata and qls functions in Matlab. Stat Interface 2:187–196CrossRefGoogle Scholar
  44. 44.
    Pappo I, Spector R, Schindel A, Morgenstern S, Sandbank J, Leider LT, Schneebaum S, Lelcuk S, Karni T (2010) Diagnostic performance of a novel device for real-time margin assessment in lumpectomy specimens. J Surg Res 160(2):277–281. doi: 10.1016/j.jss.2009.02.025 CrossRefPubMedGoogle Scholar
  45. 45.
    Taroni P, Bassi A, Comelli D, Farina A, Cubeddu R, Pifferi A (2009) Diffuse optical spectroscopy of breast tissue extended to 1100 nm. J Biomed Opt 14(5):054030. doi: 10.1117/1.3251051 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • L. L. de Boer
    • 1
    Email author
  • B. G. Molenkamp
    • 1
  • T. M. Bydlon
    • 2
  • B. H. W. Hendriks
    • 2
  • J. Wesseling
    • 3
  • H. J. C. M. Sterenborg
    • 1
  • T. J. M. Ruers
    • 1
    • 4
  1. 1.Department of SurgeryNetherlands Cancer InstituteAmsterdamThe Netherlands
  2. 2.Philips Research, In-body Systems GroupEindhovenThe Netherlands
  3. 3.Department of PathologyNetherlands Cancer InstituteAmsterdamThe Netherlands
  4. 4.MIRA InstituteUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations