Breast Cancer Research and Treatment

, Volume 152, Issue 3, pp 463–476 | Cite as

The predictive and prognostic role of phosphatase phosphoinositol-3 (PI3) kinase (PIK3CA) mutation in HER2-positive breast cancer receiving HER2-targeted therapy: a meta-analysis

  • Ezzeldin M. IbrahimEmail author
  • Ghieth A. Kazkaz
  • Mubarak M. Al-Mansour
  • Meteb E. Al-Foheidi


The association between PIK3CA mutation and resistance to anti-HER2 therapy (AHT) is not precisely defined. This meta-analysis intended to explore the clinical utility of PIK3CA mutation in HER2-positive breast cancer treated with AHT. Literature search identified 19 eligible studies. There were 1720 patients with advanced, 828 with early and 1290 patients treated in the neoadjuvant setting. In metastatic breast cancer, AHT showed no differential objective response benefit between the wild type (WT) and the mutated type (MT) PIK3CA subgroups (odds ratio [OR] = 1.09; 95 % CI 0.60–2.00; P = 0.78). AHT favorable affected progression-free survival (PFS) irrespective of PIK3CA mutation. There was no PFS difference between WT and MT regardless of the offered therapy. In early breast cancer, trastuzumab combined with the same chemotherapy conferred consistent relapse-free survival benefit in WT and MT subgroups (WT: HR = 0.59; 95 % CI 0.44–0.80; P < 0.001 vs. MT: HR = 0.42; 95 % CI 0.24–0.74; P < 0.001). In the neoadjuvant setting, AHT-based therapy produced a 72 % higher pathologic complete response (pCR) rate in WT as compared with that in MT PIK3CA tumors (OR = 1.72; 95 % CI 1.29–2.13; P < 0.001). In that setting, there was no disease-free or overall survival difference based on PIK3CA mutational status. In this meta-analysis, AHT did not achieve differential benefit according to PIK3CA mutation in HER2-positive metastatic or early breast cancer; however, in the neoadjuvant setting, patients harboring WT PIK3CA tumors attained a higher pCR rate.


Breast cancer HER2-positive PIK3CA Mutation Prognostic Predictive 


Compliance with Ethical Standards

Conflict of interest


Ethical standards

The meta-analysis complies with the current laws of Saudi Arabia.


  1. 1.
    Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, Levin WJ, Stuart SG, Udove J, Ullrich A et al (1989) Studies of the her-2/neu proto-oncogene in human breast and ovarian cancer. Science 244:707–712CrossRefPubMedGoogle Scholar
  2. 2.
    Loi S, Haibe-Kains B, Majjaj S, Lallemand F, Durbecq V, Larsimont D, Gonzalez-Angulo AM, Pusztai L, Symmans WF, Bardelli A, Ellis P, Tutt AN, Gillett CE, Hennessy BT, Mills GB, Phillips WA, Piccart MJ, Speed TP, McArthur GA, Sotiriou C (2010) Pik3ca mutations associated with gene signature of low mtorc1 signaling and better outcomes in estrogen receptor-positive breast cancer. Proc Natl Acad Sci USA 107:10208–10213. doi: 10.1073/pnas.0907011107 PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Kataoka Y, Mukohara T, Shimada H, Saijo N, Hirai M, Minami H (2010) Association between gain-of-function mutations in pik3ca and resistance to HER2-targeted agents in HER2-amplified breast cancer cell lines. Ann Oncol 21:255–262. doi: 10.1093/annonc/mdp304 CrossRefPubMedGoogle Scholar
  4. 4.
    Cescon DW, Bedard PL (2015) Pik3ca genotype and treatment decisions in human epidermal growth factor receptor 2-positive breast cancer. J Clin Oncol. doi: 10.1200/JCO.2014.59.3160 PubMedGoogle Scholar
  5. 5.
    Wang Y, Liu Y, Du Y, Yin W, Lu J (2013) The predictive role of phosphatase and tensin homolog (pten) loss, phosphoinositol-3 (pi3) kinase (pik3ca) mutation, and pi3K pathway activation in sensitivity to trastuzumab in HER2-positive breast cancer: a meta-analysis. Curr Med Res Opin 29:633–642. doi: 10.1185/03007995.2013.794775 CrossRefPubMedGoogle Scholar
  6. 6.
    Brugge J, Hung MC, Mills GB (2007) A new mutational aktivation in the pi3k pathway. Cancer Cell 12:104–107. doi: 10.1016/j.ccr.2007.07.014 CrossRefPubMedGoogle Scholar
  7. 7.
    Tierney JF, Stewart LA, Ghersi D, Burdett S, Sydes MR (2007) Practical methods for incorporating summary time-to-event data into meta-analysis. Trials 8:16. doi: 10.1186/1745-6215-8-16 PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Parmar MK, Torri V, Stewart L (1998) Extracting summary statistics to perform meta-analyses of the published literature for survival endpoints. Stat Med 17:2815–2834CrossRefPubMedGoogle Scholar
  9. 9.
    Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21:1539–1558. doi: 10.1002/sim.1186 CrossRefPubMedGoogle Scholar
  10. 10.
    Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560. doi: 10.1136/bmj.327.7414.557 PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Begg CB, Mazumdar M (1994) Operating characteristics of a rank correlation test for publication bias. Biometrics 50:1088–1101CrossRefPubMedGoogle Scholar
  13. 13.
    Wang L, Zhang Q, Zhang J, Sun S, Guo H, Jia Z, Wang B, Shao Z, Wang Z, Hu X (2011) Pi3 k pathway activation results in low efficacy of both trastuzumab and lapatinib. BMC Cancer 11:248. doi: 10.1186/1471-2407-11-248 PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Krop IE, LoRusso P, Miller KD, Modi S, Yardley D, Rodriguez G, Guardino E, Lu M, Zheng M, Girish S, Amler L, Winer EP, Rugo HS (2012) A phase II study of trastuzumab emtansine in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer who were previously treated with trastuzumab, lapatinib, an anthracycline, a taxane, and capecitabine. J Clin Oncol 30:3234–3241. doi: 10.1200/JCO.2011.40.5902 CrossRefPubMedGoogle Scholar
  15. 15.
    Baselga J, Verma S, Ro J, Huober J, Guardino E, Fang L, Olsen S, Phillips GL, de Haas S, Pegram M (2013) Abstract lb-63: Relationship between tumor biomarkers (bm) and efficacy in emilia, a phase III study of trastuzumab emtansine (t-dm1) in HER2-positive metastatic breast cancer (mbc). Cancer Research 73:LB-63. doi: 10.1158/1538-7445.am2013-lb-63 CrossRefGoogle Scholar
  16. 16.
    Baselga J, Cortes J, Im SA, Clark E, Ross G, Kiermaier A, Swain SM (2014) Biomarker analyses in cleopatra: a phase III, placebo-controlled study of pertuzumab in human epidermal growth factor receptor 2-positive, first-line metastatic breast cancer. J Clin Oncol 32:3753–3761. doi: 10.1200/JCO.2013.54.5384 CrossRefPubMedGoogle Scholar
  17. 17.
    Kim S-B, Wildiers H, Krop IE, Leung ACF, Trudeau C, Yu R, de Haas S, Gonzalez-Martin A (2014) Relationship between tumor biomarkers (bm) and efficacy in th3resa, a phase 3 study of trastuzumab emtansine (t-dm1) versus treatment of physician’s choice (tpc) in HER2-positive advanced breast cancer (bc) previously treated with trastuzumab and lapatinib. ASCO Meet Abstr 32:605Google Scholar
  18. 18.
    Miller KD, Dieras V, Harbeck N, Andre F, Mahtani RL, Gianni L, Albain KS, Crivellari D, Fang L, Michelson G, de Haas SL, Burris HA (2014) Phase IIa trial of trastuzumab emtansine with pertuzumab for patients with human epidermal growth factor receptor 2-positive, locally advanced, or metastatic breast cancer. J Clin Oncol 32:1437–1444. doi: 10.1200/JCO.2013.52.6590 CrossRefPubMedGoogle Scholar
  19. 19.
    Xu B, Guan Z, Shen Z, Tong Z, Jiang Z, Yang J, DeSilvio M, Russo M, Leigh M, Ellis C (2014) Association of phosphatase and tensin homolog low and phosphatidylinositol 3-kinase catalytic subunit alpha gene mutations on outcome in human epidermal growth factor receptor 2-positive metastatic breast cancer patients treated with first-line lapatinib plus paclitaxel or paclitaxel alone. Breast Cancer Res 16:405. doi: 10.1186/s13058-014-0405-y PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Tural D, Serdengecti S, Demirelli F, Ozturk T, Ilvan S, Turna H, Ozguroglu M, Buyukunal E (2014) Clinical significance of p95her2 overexpression, pten loss and pi3k expression in p185 HER2-positive metastatic breast cancer patients treated with trastuzumab-based therapies. Br J Cancer 110:1968–1976. doi: 10.1038/bjc.2014.72 PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Gianni L, Bianchini G, Kiermaier A, Bianchi G, Im Y-H, Pienkowski T, Roman L, Liu M-C, Tseng L-M, Ratnayake J, Szado T, Ross G, Valagussa P (2011) S5-1: neoadjuvant pertuzumab (p) and trastuzumab (h): Biomarker analyses of a 4-arm randomized phase II study (neosphere) in patients (pts) with her2− positive breast cancer (bc). Cancer Res 71:S5-1. doi: 10.1158/0008-5472.sabcs11-s5-1 CrossRefGoogle Scholar
  22. 22.
    Dave B, Migliaccio I, Gutierrez MC, Wu M-F, Chamness GC, Wong H, Narasanna A, Chakrabarty A, Hilsenbeck SG, Huang J, Rimawi M, Schiff R, Arteaga C, Osborne CK, Chang JC (2011) Loss of phosphatase and tensin homolog or phosphoinositol-3 kinase activation and response to trastuzumab or lapatinib in human epidermal growth factor receptor 2—overexpressing locally advanced breast cancers. J Clin Oncol 29:166–173. doi: 10.1200/jco.2009.27.7814 PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Jinno H, Sato T, Hayashida T, Takahashi M, Hirose S, Kitagawa Y (2012) Abstract p3-06-22: mechanisms behind trastuzumab resistance as neoadjuvant therapy in HER2-positive operable breast cancer. Cancer Res 72:P3-06-22. doi: 10.1158/0008-5472.sabcs12-p3-06-22 CrossRefGoogle Scholar
  24. 24.
    Guarneri V, Dieci MV, Carbognin L, Maiorana A, Bettelli S, Tortora G, Conte PF, Bria E (2014) 254o activity of neoadjuvant lapatinib (l) plus trastuzumab (t) for early breast cancer (ebc) according to pik3ca mutations: pathological complete response (pcr) rate in the cherlob study and pooled analysis of randomized trials. Ann Oncol 25:iv85. doi: 10.1093/annonc/mdu327.2 Google Scholar
  25. 25.
    Loibl S, von Minckwitz G, Schneeweiss A, Paepke S, Lehmann A, Rezai M, Zahm DM, Sinn P, Khandan F, Eidtmann H, Dohnal K, Heinrichs C, Huober J, Pfitzner B, Fasching PA, Andre F, Lindner JL, Sotiriou C, Dykgers A, Guo S, Gade S, Nekljudova V, Loi S, Untch M, Denkert C (2014) Pik3ca mutations are associated with lower rates of pathologic complete response to anti-human epidermal growth factor receptor 2 (her2) therapy in primary HER2-overexpressing breast cancer. J Clin Oncol 32:3212–3220. doi: 10.1200/jco.2014.55.7876 CrossRefPubMedGoogle Scholar
  26. 26.
    Schneeweiss A, Chia S, Hegg R, Tausch C, Deb R, Ratnayake J, McNally V, Ross G, Kiermaier A, Cortes J (2014) Evaluating the predictive value of biomarkers for efficacy outcomes in response to pertuzumab- and trastuzumab-based therapy: an exploratory analysis of the tryphaena study. Breast Cancer Res 16:R73. doi: 10.1186/bcr3690 PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Majewski IJ, Nuciforo P, Mittempergher L, Bosma AJ, Eidtmann H, Holmes E, Sotiriou C, Fumagalli D, Jimenez J, Aura C, Prudkin L, Diaz-Delgado MC, de la Pena L, Loi S, Ellis C, Schultz N, de Azambuja E, Harbeck N, Piccart-Gebhart M, Bernards R, Baselga J (2015) Pik3ca mutations are associated with decreased benefit to neoadjuvant human epidermal growth factor receptor 2-targeted therapies in breast cancer. J Clin Oncol. doi: 10.1200/JCO.2014.55.2158 PubMedGoogle Scholar
  28. 28.
    Cizkova M, Dujaric ME, Lehmann-Che J, Scott V, Tembo O, Asselain B, Pierga JY, Marty M, de Cremoux P, Spyratos F, Bieche I (2013) Outcome impact of pik3ca mutations in HER2-positive breast cancer patients treated with trastuzumab. Br J Cancer 108:1807–1809. doi: 10.1038/bjc.2013.164 PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Loi S, Michiels S, Lambrechts D, Fumagalli D, Claes B, Kellokumpu-Lehtinen PL, Bono P, Kataja V, Piccart MJ, Joensuu H, Sotiriou C (2013) Somatic mutation profiling and associations with prognosis and trastuzumab benefit in early breast cancer. J Natl Cancer Inst 105:960–967. doi: 10.1093/jnci/djt121 PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Pogue-Geile KL, Song N, Jeong JH, Gavin PG, Kim SR, Blackmon NL, Finnigan M, Rastogi P, Fehrenbacher L, Mamounas EP, Swain SM, Wickerham DL, Geyer CE Jr, Costantino JP, Wolmark N, Paik S (2015) Intrinsic subtypes, pik3ca mutation, and the degree of benefit from adjuvant trastuzumab in the nsabp b-31 trial. J Clin Oncol. doi: 10.1200/JCO.2014.56.2439 Google Scholar
  31. 31.
    Barbareschi M, Cuorvo LV, Girlando S, Bragantini E, Eccher C, Leonardi E, Ferro A, Caldara A, Triolo R, Cantaloni C, Decarli N, Galligioni E, Dalla Palma P (2012) pi3kca mutations and/or pten loss in HER2-positive breast carcinomas treated with trastuzumab are not related to resistance to anti-her2 therapy. Virchows Arch 461:129–139. doi: 10.1007/s00428-012-1267-2 CrossRefPubMedGoogle Scholar
  32. 32.
    Rastogi P, Anderson SJ, Bear HD, Geyer CE, Kahlenberg MS, Robidoux A, Margolese RG, Hoehn JL, Vogel VG, Dakhil SR, Tamkus D, King KM, Pajon ER, Wright MJ, Robert J, Paik S, Mamounas EP, Wolmark N (2008) Preoperative chemotherapy: updates of national surgical adjuvant breast and bowel project protocols b-18 and b-27. J Clin Oncol 26:778–785. doi: 10.1200/JCO.2007.15.0235 CrossRefPubMedGoogle Scholar
  33. 33.
    Cortazar P, Zhang L, Untch M, Mehta K, Costantino JP, Wolmark N, Bonnefoi H, Cameron D, Gianni L, Valagussa P, Swain SM, Prowell T, Loibl S, Wickerham DL, Bogaerts J, Baselga J, Perou C, Blumenthal G, Blohmer J, Mamounas EP, Bergh J, Semiglazov V, Justice R, Eidtmann H, Paik S, Piccart M, Sridhara R, Fasching PA, Slaets L, Tang S, Gerber B, Geyer CE Jr, Pazdur R, Ditsch N, Rastogi P, Eiermann W, von Minckwitz G (2014) Pathological complete response and long-term clinical benefit in breast cancer: the ctneobc pooled analysis. Lancet 384:164–172. doi: 10.1016/S0140-6736(13)62422-8 CrossRefPubMedGoogle Scholar
  34. 34.
    Nagata Y, Lan KH, Zhou X, Tan M, Esteva FJ, Sahin AA, Klos KS, Li P, Monia BP, Nguyen NT, Hortobagyi GN, Hung MC, Yu D (2004) Pten activation contributes to tumor inhibition by trastuzumab, and loss of pten predicts trastuzumab resistance in patients. Cancer Cell 6:117–127. doi: 10.1016/j.ccr.2004.06.022 CrossRefPubMedGoogle Scholar
  35. 35.
    Esteva FJ, Guo H, Zhang S, Santa-Maria C, Stone S, Lanchbury JS, Sahin AA, Hortobagyi GN, Yu D (2010) Pten, pik3ca, p-akt, and p-p70s6k status: association with trastuzumab response and survival in patients with HER2-positive metastatic breast cancer. Am J Pathol 177:1647–1656. doi: 10.2353/ajpath.2010.090885 PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Berns K, Horlings HM, Hennessy BT, Madiredjo M, Hijmans EM, Beelen K, Linn SC, Gonzalez-Angulo AM, Stemke-Hale K, Hauptmann M, Beijersbergen RL, Mills GB, van de Vijver MJ, Bernards R (2007) A functional genetic approach identifies the pi3k pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 12:395–402. doi: 10.1016/j.ccr.2007.08.030 CrossRefPubMedGoogle Scholar
  37. 37.
    Saal LH, Holm K, Maurer M, Memeo L, Su T, Wang X, Yu JS, Malmstrom PO, Mansukhani M, Enoksson J, Hibshoosh H, Borg A, Parsons R (2005) Pik3ca mutations correlate with hormone receptors, node metastasis, and erbb2, and are mutually exclusive with pten loss in human breast carcinoma. Cancer Res 65:2554–2559. doi: 10.1158/0008-5472-CAN-04-3913 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ezzeldin M. Ibrahim
    • 1
    Email author
  • Ghieth A. Kazkaz
    • 1
  • Mubarak M. Al-Mansour
    • 2
  • Meteb E. Al-Foheidi
    • 2
  1. 1.Oncology Center of ExcellenceInternational Medical CenterJeddahKingdom of Saudi Arabia
  2. 2.Princess Noorah Oncology CenterJeddahKingdom of Saudi Arabia

Personalised recommendations