Advertisement

Breast Cancer Research and Treatment

, Volume 150, Issue 2, pp 427–437 | Cite as

The association between glucose-lowering drug use and mortality among breast cancer patients with type 2 diabetes

  • Pauline A. J. VissersEmail author
  • Chris R. Cardwell
  • Lonneke V. van de Poll-Franse
  • Ian S. Young
  • Frans Pouwer
  • Liam J. Murray
Epidemiology

Abstract

This study assessed the association between glucose-lowering drug (GLD) use, including metformin, sulphonylurea derivatives and insulin, after breast cancer diagnosis and breast cancer-specific and all-cause mortality. 1763 breast cancer patients, diagnosed between 1998 and 2010, with type 2 diabetes were included. Cancer information was retrieved from English cancer registries, prescription data from the UK Clinical Practice Research Datalink and mortality data from the Office of National Statistics (up to January 2012). Time-varying Cox regression models were used to calculate HRs and 95 % CIs for the association between GLD use and breast cancer-specific and all-cause mortality. In 1057 patients with diabetes before breast cancer, there was some evidence that breast cancer-specific mortality decreased with each year of metformin use (adjusted HR 0.88; 95 % CI 0.75–1.04), with a strong association seen with over 2 years of use (adjusted HR 0.47; 95 % CI 0.26–0.82). Sulphonylurea derivative use for less than 2 years was associated with increased breast cancer-specific mortality (adjusted HR 1.70; 95 % CI 1.18–2.46), but longer use was not (adjusted HR 0.94; 95 % CI 0.54–1.66). In 706 patients who developed diabetes after breast cancer, similar patterns were seen for metformin, but sulphonylurea derivative use was strongly associated with cancer-specific mortality (adjusted HR 3.64; 95 % CI 2.16–6.16), with similar estimates for short- and long-term users. This study provides some support for an inverse association between, mainly long-term, metformin use and (breast cancer-specific) mortality. In addition, sulphonylurea derivative use was associated with increased breast cancer-specific mortality, but this should be interpreted cautiously, as it could reflect selective prescribing in advanced cancer patients.

Keywords

Glucose-lowering drugs Metformin Sulphonylurea derivatives Insulin Diabetes Breast cancer 

Notes

Acknowledgments

This study is based partly on data from the Clinical Practice Research Datalink, obtained under licence from the United Kingdom Medicines and Healthcare products Regulatory Agency. However, the interpretation and conclusions contained in this study are those of the authors alone.

Conflict of interest

The authors declare no conflict of interest relevant to this article.

Funding

C.R.C was supported by a United Kingdom National Institute for Health Research awarded Career Development Fellowship funded by the Health and Social Care Research and Development (Public Health Agency, Northern Ireland), which also funded access to the Clinical Practice Research Database dataset. The funders had no role in the study design; collection, analysis and interpretation of the data; writing of the report; or the decision to submit for publication.

References

  1. 1.
    Wolf I, Sadetzki S, Catane R, Karasik A, Kaufman B (2005) Diabetes mellitus and breast cancer. Lancet Oncol 6(2):103–111. doi: 10.1016/s1470-2045(05)01736-5 CrossRefPubMedGoogle Scholar
  2. 2.
    van de Poll-Franse LV, Houterman S, Janssen-Heijnen ML, Dercksen MW, Coebergh JW, Haak HR (2007) Less aggressive treatment and worse overall survival in cancer patients with diabetes: a large population based analysis. Int J Cancer 120(9):1986–1992. doi: 10.1002/ijc.22532 CrossRefPubMedGoogle Scholar
  3. 3.
    De Bruijn KM, Arends LR, Hansen BE, Leeflang S, Ruiter R, van Eijck CH (2013) Systematic review and meta-analysis of the association between diabetes mellitus and incidence and mortality in breast and colorectal cancer. Br J Surg 100(11):1421–1429. doi: 10.1002/bjs.9229 CrossRefPubMedGoogle Scholar
  4. 4.
    Peairs KS, Barone BB, Snyder CF, Yeh HC, Stein KB, Derr RL, Brancati FL, Wolff AC (2011) Diabetes mellitus and breast cancer outcomes: a systematic review and meta-analysis. J Clin Oncol 29(1):40–46. doi: 10.1200/jco.2009.27.3011 CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Du Y, Zheng H, Wang J, Ren Y, Li M, Gong C, Xu F, Yang C (2014) Metformin inhibits histone H2B monoubiquitination and downstream gene transcription in human breast cancer cells. Oncol Lett 8(2):809–812. doi: 10.3892/ol.2014.2158 PubMedCentralPubMedGoogle Scholar
  6. 6.
    Queiroz EA, Puukila S, Eichler R, Sampaio SC, Forsyth HL, Lees SJ, Barbosa AM, Dekker RF, Fortes ZB, Khaper N (2014) Metformin induces apoptosis and cell cycle arrest mediated by oxidative stress, AMPK and FOXO3a in MCF-7 breast cancer cells. PLoS One 9(5):e98207. doi: 10.1371/journal.pone.0098207 CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Col NF, Ochs L, Springmann V, Aragaki AK, Chlebowski RT (2012) Metformin and breast cancer risk: a meta-analysis and critical literature review. Breast Cancer Res Treat 135(3):639–646. doi: 10.1007/s10549-012-2170-x CrossRefPubMedGoogle Scholar
  8. 8.
    Bosco JL, Antonsen S, Sorensen HT, Pedersen L, Lash TL (2011) Metformin and incident breast cancer among diabetic women: a population-based case-control study in Denmark. Cancer Epidemiol Biomark Prev 20(1):101–111. doi: 10.1158/1055-9965.epi-10-0817 CrossRefGoogle Scholar
  9. 9.
    Chlebowski RT, McTiernan A, Wactawski-Wende J, Manson JE, Aragaki AK, Rohan T, Ipp E, Kaklamani VG, Vitolins M, Wallace R, Gunter M, Phillips LS, Strickler H, Margolis K, Euhus DM (2012) Diabetes, metformin, and breast cancer in postmenopausal women. J Clin Oncol 30(23):2844–2852. doi: 10.1200/jco.2011.39.7505 CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    He X, Esteva FJ, Ensor J, Hortobagyi GN, Lee MH, Yeung SC (2012) Metformin and thiazolidinediones are associated with improved breast cancer-specific survival of diabetic women with HER2+ breast cancer. Ann Oncol 23(7):1771–1780. doi: 10.1093/annonc/mdr534 CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Lega IC, Austin PC, Gruneir A, Goodwin PJ, Rochon PA, Lipscombe LL (2013) Association between metformin therapy and mortality after breast cancer: a population-based study. Diabetes Care 36(10):3018–3026. doi: 10.2337/dc12-2535 CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Oppong BA, Pharmer LA, Oskar S, Eaton A, Stempel M, Patil S, King TA (2014) The effect of metformin on breast cancer outcomes in patients with type 2 diabetes. Cancer Med 3(4):1025–1034. doi: 10.1002/cam4.259
  13. 13.
    Bayraktar S, Hernadez-Aya LF, Lei X, Meric-Bernstam F, Litton JK, Hsu L, Hortobagyi GN, Gonzalez-Angulo AM (2012) Effect of metformin on survival outcomes in diabetic patients with triple receptor-negative breast cancer. Cancer 118(5):1202–1211. doi: 10.1002/cncr.26439 CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Suissa S, Azoulay L (2012) Metformin and the risk of cancer: time-related biases in observational studies. Diabetes Care 35(12):2665–2673. doi: 10.2337/dc12-0788 CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Hou G, Zhang S, Zhang X, Wang P, Hao X, Zhang J (2013) Clinical pathological characteristics and prognostic analysis of 1013 breast cancer patients with diabetes. Breast Cancer Res Treat 137(3):807–816. doi: 10.1007/s10549-012-2404-y CrossRefPubMedGoogle Scholar
  16. 16.
    Currie CJ, Poole CD, Jenkins-Jones S, Gale EA, Johnson JA, Morgan CL (2012) Mortality after incident cancer in people with and without type 2 diabetes: impact of metformin on survival. Diabetes Care 35(2):299–304. doi: 10.2337/dc11-1313 CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Jick H, Jick SS, Derby LE (1991) Validation of information recorded on general practitioner based computerised data resource in the United Kingdom. BMJ 302(6779):766–768. doi: 10.1136/bmj.302.6779.766 CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Khan NF, Perera R, Harper S, Rose PW (2010) Adaptation and validation of the Charlson index for Read/OXMIS coded databases. BMC Fam Pract 11:1. doi: 10.1186/1471-2296-11-1 CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    British Medical Association and the Royal Pharmaceutical Society of Great Britain (2013) British National Formulary, http://www.bnf.org/bnf/index.htm
  20. 20.
    Chubak J, Boudreau DM, Wirtz HS, McKnight B, Weiss NS (2013) Threats to validity of nonrandomized studies of postdiagnosis exposures on cancer recurrence and survival. J Natl Cancer Inst 105(19):1456–1462. doi: 10.1093/jnci/djt211 CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Kirkwood BR, Sterne JAC (2003) Essential medical statistics, 2nd edn. Blackwell publishing, HobokenGoogle Scholar
  22. 22.
    Dowling RJ, Zakikhani M, Fantus IG, Pollak M, Sonenberg N (2007) Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells. Cancer Res 67(22):10804–10812. doi: 10.1158/0008-5472.can-07-2310 CrossRefPubMedGoogle Scholar
  23. 23.
    Zakikhani M, Dowling R, Fantus IG, Sonenberg N, Pollak M (2006) Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells. Cancer Res 66(21):10269–10273. doi: 10.1158/0008-5472.can-06-1500 CrossRefPubMedGoogle Scholar
  24. 24.
    Rocha GZ, Dias MM, Ropelle ER, Osório-Costa F, Rossato FA, Vercesi AE, Saad MJA, Carvalheira JBC (2011) Metformin amplifies chemotherapy-induced AMPK activation and antitumoral growth. Clin Cancer Res 17(12):3993–4005. doi: 10.1158/1078-0432.ccr-10-2243 CrossRefPubMedGoogle Scholar
  25. 25.
    Jiralerspong S, Palla SL, Giordano SH, Meric-Bernstam F, Liedtke C, Barnett CM, Hsu L, Hung MC, Hortobagyi GN, Gonzalez-Angulo AM (2009) Metformin and pathologic complete responses to neoadjuvant chemotherapy in diabetic patients with breast cancer. J Clin Oncol 27(20):3297–3302. doi: 10.1200/jco.2009.19.6410 CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Viollet B, Guigas B, Sanz Garcia N, Leclerc J, Foretz M, Andreelli F (2012) Cellular and molecular mechanisms of metformin: an overview. Clin Sci (Lond) 122(6):253–270. doi: 10.1042/cs20110386 CrossRefGoogle Scholar
  27. 27.
    Duggan C, Wang CY, Neuhouser ML, Xiao L, Smith AW, Reding KW, Baumgartner RN, Baumgartner KB, Bernstein L, Ballard-Barbash R, McTiernan A (2013) Associations of insulin-like growth factor and insulin-like growth factor binding protein-3 with mortality in women with breast cancer. Int J Cancer 132(5):1191–1200. doi: 10.1002/ijc.27753 CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Sarkissyan S, Sarkissyan M, Wu Y, Cardenas J, Koeffler HP, Vadgama JV (2014) IGF-1 regulates Cyr61 induced breast cancer cell proliferation and invasion. PLoS One 9(7):e103534. doi: 10.1371/journal.pone.0103534 CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Goodwin P, Stambolic V, Lemieux J, Chen B, Parulekar W, Gelmon K, Hershman D, Hobday T, Ligibel J, Mayer I, Pritchard K, Whelan T, Rastogi P, Shepherd L (2011) Evaluation of metformin in early breast cancer: a modification of the traditional paradigm for clinical testing of anti-cancer agents. Breast Cancer Res Treat 126(1):215–220. doi: 10.1007/s10549-010-1224-1 CrossRefPubMedGoogle Scholar
  30. 30.
    NCIC Clinical Trials Group, National Cancer Institute, A Phase III Randomized Trial of Metformin versus Placebo in Early Stage Breast Cancer. ClinicalTrials.gov [Internet]. https://clinicaltrials.gov/ct2/show/NCT01101438. NLM Identifier: NCT01101438
  31. 31.
    Bowker SL, Majumdar SR, Veugelers P, Johnson JA (2006) Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin. Diabetes Care 29(2):254–258. doi: 10.2337/diacare.29.02.06.dc05-1558
  32. 32.
    McCoubrie R, Jeffrey D, Paton C, Dawes L (2005) Managing diabetes mellitus in patients with advanced cancer: a case note audit and guidelines. Eur J Cancer Care 14(3):244–248. doi: 10.1111/j.1365-2354.2005.00564.x CrossRefGoogle Scholar
  33. 33.
    Rendell M (2004) The role of sulphonylureas in the management of type 2 diabetes mellitus. Drugs 64(12):1339–1358. doi: 10.2165/00003495-200464120-00006 CrossRefPubMedGoogle Scholar
  34. 34.
    Ferguson RD, Novosyadlyy R, Fierz Y, Alikhani N, Sun H, Yakar S, Leroith D (2012) Hyperinsulinemia enhances c-Myc-mediated mammary tumor development and advances metastatic progression to the lung in a mouse model of type 2 diabetes. Breast Cancer Res 14(1):R8. doi: 10.1186/bcr3089 CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Perseghin G, Calori G, Lattuada G, Ragogna F, Dugnani E, Garancini MP, Crosignani P, Villa M, Bosi E, Ruotolo G, Piemonti L (2012) Insulin resistance/hyperinsulinemia and cancer mortality: the Cremona study at the 15th year of follow-up. Acta Diabetol 49(6):421–428. doi: 10.1007/s00592-011-0361-2 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Pauline A. J. Vissers
    • 1
    • 2
    Email author
  • Chris R. Cardwell
    • 3
  • Lonneke V. van de Poll-Franse
    • 1
    • 2
  • Ian S. Young
    • 3
  • Frans Pouwer
    • 1
  • Liam J. Murray
    • 3
  1. 1.CoRPS—Center of Research on Psychology in Somatic Diseases, Department of Medical and Clinical PsychologyTilburg UniversityTilburgThe Netherlands
  2. 2.Eindhoven Cancer Registry, Comprehensive Cancer Center the NetherlandsEindhovenThe Netherlands
  3. 3.Centre for Public HealthQueen’s University BelfastBelfastNorthern Ireland, UK

Personalised recommendations