Breast Cancer Research and Treatment

, Volume 150, Issue 1, pp 91–103 | Cite as

The mammalian target of rapamycin complex 1 (mTORC1) in breast cancer: the impact of oestrogen receptor and HER2 pathways

  • Dena A. JerjeesEmail author
  • Ola H. Negm
  • M. Layth Alabdullah
  • Sameer Mirza
  • Methaq Alkaabi
  • Mohamed R. Hameed
  • Rezvan Abduljabbar
  • Abir Muftah
  • Chris C. Nolan
  • Andrew R. Green
  • Patrick J. Tighe
  • Vimla Band
  • Ian O. Ellis
  • Emad A. Rakha
Preclinical Study


The mammalian target of rapamycin complex 1 (mTORC1) is a downstream of the PI3K/Akt pathway which affects cancer development. mTORC1 has many downstream signalling effectors that can enhance different cellular responses. This study aims to investigate the expression of mTORC1 in breast cancer (BC) and correlate it with key clinicopathological and molecular features of BC especially to proteins related to oestrogen receptor (ER) and HER2 pathways in different BC classes. Moreover, mTORC1 expression was assessed in 6 BC cell lines including ER+ and ER− cell lines with and without HER2 transfection. Immunohistochemistry was used to assess the expression of phospho (p) mTORC1 in a large (n = 1300) annotated BC series prepared as tissue microarray. Reverse phase protein array (RPPA) was used to assess its expression in the different BC cell lines. The expression of p-mTORC1 was cytoplasmic with moderate/high expression noted in 44 % of BC. p-mTORC1 expression was associated with clinicopathological variables characteristic of good prognosis. Positive correlation with ER, ER-related proteins AKT, PI3K and luminal differentiation markers were observed in the whole series and in the ER+HER2− subgroup. Association with HER2 was mainly observed in the ER-negative class. RPPA indicated that p-mTORC1 expression was mainly related to ER expression and with better outcome in the Akt positive tumours. p-mTORC1 is associated with good prognostic features. Its expression is related to ER and ER related proteins in addition to AKT and PI3K. Its relation with HER2 expression is mainly seen in the absence of ER expression.


mTORC1 Breast cancer pi3k pathway Immunohistochemistry 



Dena A Jerjees is funded by the higher committee of educational development in Iraq.

Conflict of interest


Ethical standards

This study was approved by the Nottingham Research Ethics Committee.


  1. 1.
    van ’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871):530–536CrossRefPubMedGoogle Scholar
  2. 2.
    Ali S, Coombes RC (2002) Endocrine-responsive breast cancer and strategies for combating resistance. Nat Rev Cancer 2(2):101–112CrossRefPubMedGoogle Scholar
  3. 3.
    Musgrove EA, Sutherland RL (2009) Biological determinants of endocrine resistance in breast cancer. Nat Rev Cancer 9(9):631–643CrossRefPubMedGoogle Scholar
  4. 4.
    Le Romancer M, Poulard C, Cohen P, Sentis S, Renoir JM, Corbo L (2011) Cracking the estrogen receptor’s posttranslational code in breast tumors. Endocr Rev 32(5):597–622CrossRefPubMedGoogle Scholar
  5. 5.
    Nagata Y, Lan KH, Zhou X, Tan M, Esteva FJ, Sahin AA, Klos KS, Li P, Monia BP, Nguyen NT et al (2004) PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 6(2):117–127CrossRefPubMedGoogle Scholar
  6. 6.
    Berns K, Horlings HM, Hennessy BT, Madiredjo M, Hijmans EM, Beelen K, Linn SC, Gonzalez-Angulo AM, Stemke-Hale K, Hauptmann M et al (2007) A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 12(4):395–402CrossRefPubMedGoogle Scholar
  7. 7.
    Massarelli E, Varella-Garcia M, Tang X, Xavier AC, Ozburn NC, Liu DD, Bekele BN, Herbst RS, Wistuba II (2007) KRAS mutation is an important predictor of resistance to therapy with epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. Clin Cancer Res 13(10):2890–2896CrossRefPubMedGoogle Scholar
  8. 8.
    Vicier C, Dieci MV, Arnedos M, Delaloge S, Viens P, Andre F (2014) Clinical development of mTOR inhibitors in breast cancer. Breast Cancer Res 16(1):203CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Miller TW, Forbes JT, Shah C, Wyatt SK, Manning HC, Olivares MG, Sanchez V, Dugger TC, de Matos Granja N, Narasanna A et al (2009) Inhibition of mammalian target of rapamycin is required for optimal antitumor effect of HER2 inhibitors against HER2-overexpressing cancer cells. Clin Cancer Res 15(23):7266–7276CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Sengupta S, Peterson TR, Laplante M, Oh S, Sabatini DM (2010) mTORC1 controls fasting-induced ketogenesis and its modulation by ageing. Nature 468(7327):1100–1104CrossRefPubMedGoogle Scholar
  11. 11.
    Strimpakos AS, Karapanagiotou EM, Saif MW, Syrigos KN (2009) The role of mTOR in the management of solid tumors: an overview. Cancer Treat Rev 35(2):148–159CrossRefPubMedGoogle Scholar
  12. 12.
    Reiling JH, Sabatini DM (2006) Stress and mTORture signaling. Oncogene 25(48):6373–6383CrossRefPubMedGoogle Scholar
  13. 13.
    Sabatini DM (2006) mTOR and cancer: insights into a complex relationship. Nat Rev Cancer 6(9):729–734CrossRefPubMedGoogle Scholar
  14. 14.
    Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12(1):21–35CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Yin XJ, Wang G, Khan-Dawood FS (2007) Requirements of phosphatidylinositol-3 kinase and mammalian target of rapamycin for estrogen-induced proliferation in uterine leiomyoma- and myometrium-derived cell lines. Am J Obstet Gynecol 196(2):176.e171–175Google Scholar
  16. 16.
    Boulay A, Rudloff J, Ye J, Zumstein-Mecker S, O’Reilly T, Evans DB, Chen S, Lane HA (2005) Dual inhibition of mTOR and estrogen receptor signaling in vitro induces cell death in models of breast cancer. Clin Cancer Res 11(14):5319–5328CrossRefPubMedGoogle Scholar
  17. 17.
    Shrivastav A, Bruce MC, Jaksic D, Bader T, Seekallu S, Penner C, Nugent Z, Watson P, Murphy L (2014) The mechanistic target for rapamycin pathway is related to the phosphorylation score for estrogen receptor-alpha in human breast tumors in vivo. Breast Cancer Res 16(3):R49CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Treilleuz I, Arnedos M, Cropet C et al (2013) Predictive markers of everolimus efficacy in hormone receptor positive (HR+) metastatic breast cancer (MBC): final results of the TAMRAD trial translational study. In: American Society of Clinical Oncology Annual Meeting: 2013; Chicago, IL, USAGoogle Scholar
  19. 19.
    Hortobagyi GN, Piccart-Gebhart MJ, Rugo HS et al (2013) Correlation of molecular alterations with efficacy of everolimus in hormone receptor–positive, HER2-negative advanced breast cancer: results from BOLERO-2. In: American Society of Clinical Oncology Annual Meeting: 2013; Chicago, IL, USAGoogle Scholar
  20. 20.
    Boyd ZS, Wu QJ, O’Brien C, Spoerke J, Savage H, Fielder PJ, Amler L, Yan Y, Lackner MR (2008) Proteomic analysis of breast cancer molecular subtypes and biomarkers of response to targeted kinase inhibitors using reverse-phase protein microarrays. Mol Cancer Ther 7(12):3695–3706CrossRefPubMedGoogle Scholar
  21. 21.
    McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM (2006) REporting recommendations for tumor MARKer prognostic studies (REMARK). Breast Cancer Res Treat 100(2):229–235CrossRefPubMedGoogle Scholar
  22. 22.
    Rakha EA, El-Sayed ME, Powe DG, Green AR, Habashy H, Grainge MJ, Robertson JF, Blamey R, Gee J, Nicholson RI et al (2008) Invasive lobular carcinoma of the breast: response to hormonal therapy and outcomes. Eur J Cancer 44(1):73–83CrossRefPubMedGoogle Scholar
  23. 23.
    Abd El Rehim DM, Ball G, Pinder SE, Rakha E, Paish C, Robertson JFR, Macmillan D, Blamey RW, Ellis IO (2005) High-throughput protein expression analysis using tissue microarray technology of a large well-characterised series identifies biologically distinct classes of breast cancer confirming recent cDNA expression analyses. Int J cancer 116(3):340–350CrossRefPubMedGoogle Scholar
  24. 24.
    Rakha EA, Elsheikh SE, Aleskandarany MA, Habashi HO, Green AR, Powe DG, El-Sayed ME, Benhasouna A, Brunet JS, Akslen LA et al (2009) Triple-negative breast cancer: distinguishing between basal and nonbasal subtypes. Clin Cancer Res 15(7):2302–2310CrossRefPubMedGoogle Scholar
  25. 25.
    Habashy HO, Rakha EA, Aleskandarany M, Ahmed MA, Green AR, Ellis IO, Powe DG (2011) FOXO3a nuclear localisation is associated with good prognosis in luminal-like breast cancer. Breast Cancer Res Treat 129(1):11–21CrossRefPubMedGoogle Scholar
  26. 26.
    Aleskandarany MA, Rakha EA, Ahmed MA, Powe DG, Ellis IO, Green AR (2011) Clinicopathologic and molecular significance of phospho-Akt expression in early invasive breast cancer. Breast Cancer Res Treat 127(2):407–416CrossRefPubMedGoogle Scholar
  27. 27.
    Aleskandarany MA, Negm OH, Green AR, Ahmed MA, Nolan CC, Tighe PJ, Ellis IO, Rakha EA (2014) Epithelial mesenchymal transition in early invasive breast cancer: an immunohistochemical and reverse phase protein array study. Breast Cancer Res Treat 145(2):339–348CrossRefPubMedGoogle Scholar
  28. 28.
    Aleskandarany MA, Green AR, Benhasouna AA, Barros FF, Neal K, Reis-Filho JS, Ellis IO, Rakha EA (2012) Prognostic value of proliferation assay in the luminal, HER2-positive, and triple-negative biologic classes of breast cancer. Breast Cancer Res 14(1):R3CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Camp RL, Dolled-Filhart M, Rimm DL (2004) X-tile: a new bio-informatics tool for biomarker assessment and outcome-based cut-point optimization. Clin Cancer Res 10(21):7252–7259CrossRefPubMedGoogle Scholar
  30. 30.
    Dimri M, Naramura M, Duan L, Chen J, Ortega-Cava C, Chen G, Goswami R, Fernandes N, Gao Q, Dimri GP et al (2007) Modeling breast cancer-associated c-Src and EGFR overexpression in human MECs: c-Src and EGFR cooperatively promote aberrant three-dimensional acinar structure and invasive behavior. Cancer Res 67(9):4164–4172CrossRefPubMedGoogle Scholar
  31. 31.
    Alshareeda AT, Negm OH, Green AR, Nolan C, Tighe P, Albarakati N, Sultana R, Madhusudan S, Ellis IO, Rakha EA (2014) SUMOylation proteins in breast cancer. Breast Cancer Res Treat 144(3):519–530CrossRefPubMedGoogle Scholar
  32. 32.
    Negm OH, Mannsperger HA, McDermott EM, Drewe E, Powell RJ, Todd I, Fairclough LC, Tighe PJ (2014) A pro-inflammatory signalome is constitutively activated by C33Y mutant TNF receptor 1 in TNF receptor-associated periodic syndrome (TRAPS). Eur J Immunol 44(7):2096–2110CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Alshareeda AT, Negm OH, Green AR, Nolan C, Tighe P, Albarakati N, Sultana R, Madhusudan S, Ellis IO, Rakha EA (2014) SUMOylation proteins in breast cancer. Breast Cancer Res Treat 144(3):519–530CrossRefPubMedGoogle Scholar
  34. 34.
    Aleskandarany MA, Negm OH, Green AR, Ahmed MA, Nolan CC, Tighe PJ, Ellis IO, Rakha EA (2014) Epithelial mesenchymal transition in early invasive breast cancer: an immunohistochemical and reverse phase protein array study. Breast Cancer Res Treat 145(2):339–348CrossRefPubMedGoogle Scholar
  35. 35.
    Mannsperger HA, Gade S, Henjes F, Beissbarth T, Korf U (2010) RPPanalyzer: analysis of reverse-phase protein array data. Bioinformatics 26(17):2202–2203CrossRefPubMedGoogle Scholar
  36. 36.
    Rosner M, Schipany K, Hengstschlager M (2012) p70 S6K1 nuclear localization depends on its mTOR-mediated phosphorylation at T389, but not on its kinase activity towards S6. Amino Acids 42(6):2251–2256CrossRefPubMedGoogle Scholar
  37. 37.
    Bakarakos P, Theohari I, Nomikos A, Mylona E, Papadimitriou C, Dimopoulos AM, Nakopoulou L (2010) Immunohistochemical study of PTEN and phosphorylated mTOR proteins in familial and sporadic invasive breast carcinomas. Histopathology 56(7):876–882CrossRefPubMedGoogle Scholar
  38. 38.
    O’Regan R, Hawk NN (2011) mTOR inhibition in breast cancer: unraveling the complex mechanisms of mTOR signal transduction and its clinical implications in therapy. Expert Opin Ther Targets 15(7):859–872CrossRefPubMedGoogle Scholar
  39. 39.
    Beca F, Andre R, Martins DS, Bilhim T, Martins D, Schmitt F (2014) p-mTOR expression is associated with better prognosis in luminal breast carcinoma. J Clin Pathol 67:961–967CrossRefPubMedGoogle Scholar
  40. 40.
    Martina JA, Chen Y, Gucek M, Puertollano R (2012) MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 8(6):903–914CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Harrington LS, Findlay GM, Gray A, Tolkacheva T, Wigfield S, Rebholz H, Barnett J, Leslie NR, Cheng S, Shepherd PR et al (2004) The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J Cell Biol 166(2):213–223CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    Shah OJ, Hunter T (2006) Turnover of the active fraction of IRS1 involves raptor-mTOR- and S6K1-dependent serine phosphorylation in cell culture models of tuberous sclerosis. Mol Cell Biol 26(17):6425–6434CrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    Dibble CC, Asara JM, Manning BD (2009) Characterization of Rictor phosphorylation sites reveals direct regulation of mTOR complex 2 by S6K1. Mol Cell Biol 29(21):5657–5670CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    Treins C, Warne PH, Magnuson MA, Pende M, Downward J (2010) Rictor is a novel target of p70 S6 kinase-1. Oncogene 29(7):1003–1016CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Dena A. Jerjees
    • 1
    • 2
    Email author
  • Ola H. Negm
    • 3
    • 4
  • M. Layth Alabdullah
    • 5
  • Sameer Mirza
    • 6
  • Methaq Alkaabi
    • 1
  • Mohamed R. Hameed
    • 3
    • 4
  • Rezvan Abduljabbar
    • 1
  • Abir Muftah
    • 1
  • Chris C. Nolan
    • 1
  • Andrew R. Green
    • 1
  • Patrick J. Tighe
    • 3
  • Vimla Band
    • 6
  • Ian O. Ellis
    • 1
  • Emad A. Rakha
    • 1
  1. 1.Division of Cancer and Stem Cells, Department of Histopathology, School of Medicine, Nottingham City HospitalThe University of Nottingham and Nottingham University Hospitals NHS TrustNottinghamUK
  2. 2.Department of Pathology, Mosul School of MedicineUniversity of MosulMosulIraq
  3. 3.School of Life Sciences, Queens Medical CentreUniversity of NottinghamNottinghamUK
  4. 4.Medical Microbiology and Immunology Department, Faculty of MedicineMansoura UniversityMansouraEgypt
  5. 5.Academic Unit of Clinical Oncology, School of Medicine, Nottingham City HospitalThe University of NottinghamNottinghamUK
  6. 6.Department of Genetics, Cell Biology and AnatomyUniversity of NebraskaLincolnUSA

Personalised recommendations