Breast Cancer Research and Treatment

, Volume 150, Issue 1, pp 31–41 | Cite as

Cancer stem cell and epithelial–mesenchymal transition markers predict worse outcome in metaplastic carcinoma of the breast

  • Ming Liang Oon
  • Aye Aye Thike
  • Sie Yong Tan
  • Puay Hoon TanEmail author
Preclinical Study


Metaplastic breast carcinomas are known to overexpress markers of epithelial-mesenchymal transition and cancer stem cells. We evaluated their immunohistochemical expression, correlating with clinicopathological parameters and survival outcomes. The study cohort comprised 63 cases diagnosed at the Department of Pathology, Singapore General Hospital. Tumor size, grade, lymph node stage, and metaplastic components were reviewed. Immunohistochemistry was performed on sections cut from tissue microarray blocks. Antibodies to ER, PR, HER2, CK14, EGFR, 34βE12, cancer stem cell markers (CD44, CD24, ALDH1A1), epithelial–mesenchymal transition markers (Twist and E-cadherin), were applied. Survival outcomes were correlated with immunohistochemical findings. T2 tumors accounted for 74.7 % of cases, with grade 3 tumors predominating (71.4 %). Triple negativity occurred in 87.3 %, and basal-like subtype in 69.8 % of tumors. CD44+, CD44+CD24−, ALDH1A1+, loss of membranous E-cadherin (Ecadloss) and positive Twist expression was found in 82.5, 73.0, 77.8, 54.0, and 57.1 % of tumors, respectively. Combinational phenotypes of CD44+EcadlossTwist+, CD44+CD24−EcadlossTwist+, and ALDH1A1+EcadlossTwist+ were observed in 28.6, 25.4, and 2.6 % of tumors. Histologic grade was significantly correlated with E-cadherin loss (p = 0.042), Twist positivity (P = 0.001), CD44+EcadlossTwist+ (P = 0.010), CD44+CD24−EcadlossTwist+ (P = 0.018), and ALDH1A1+EcadlossTwist+(P = 0.010). Lymph node stage was significantly associated with CD44+EcadlossTwist+(P = 0.044) and CD44+CD24-EcadlossTwist+ (P = 0.044). Basal-like phenotype was significantly correlated with CD44 expressing (P = 0.004) and CD44+CD24− tumors (P = 0.049). Tumors harboring CD44+EcadlossTwist+ and CD44+CD24−EcadlossTwist+ phenotypes disclosed early recurrence (P = 0.027, P = 0.006) and poorer overall survival (P = 0.037, P = 0.006), respectively. Expression of cancer stem cell and epithelial–mesenchymal transition markers in metaplastic breast cancers correlates with adverse pathological parameters and outcome.


Metaplastic Stem cell Epithelial–mesenchymal transition 



This study is supported by a grant from the Stratified Medicine Programme Office Research Grant (SMPO201302).

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    Reis-Filho JS, Lakhani SR, Gobbi H, Sneige N (2012) Metaplastic carcinoma. In: Lakhani SR, Ellis IO, Schnitt SJ, Tan PH, van de Vijver MJ (eds) WHO classification of tumors of the breast, 4th edn. International Agency for Research on Cancer, Lyon, pp 48–52Google Scholar
  2. 2.
    Barnes PJ, Boutilier R, Chiasson D, Rayson D (2005) Metaplastic breast carcinoma: clinical–pathologic characteristics and HER2/neu expression. Breast Cancer Res Treat 91:173–178CrossRefPubMedGoogle Scholar
  3. 3.
    Lee H, Jung SY, Ro JY et al (2012) Metaplastic breast cancer: clinicopathological features and its prognosis. J Clin Pathol 65:441–446CrossRefPubMedGoogle Scholar
  4. 4.
    Song Y, Liu X, Zhang G et al (2013) Unique clinicopathological features of metaplastic breast carcinoma compared with invasive ductal carcinoma and poor prognostic indicators. World J Surg Oncol 11:129CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Toumi Z, Bullen C, Tang AC, Dalal N, Ellenbogen S (2011) Metaplastic breast carcinoma: a case report and systematic review of the literature. Pathol Int 61:582–588CrossRefPubMedGoogle Scholar
  6. 6.
    Pezzi C, Patel-Parekh L, Cole K et al (2007) Characteristics and treatment of metaplastic breast cancer: analysis of 892 Cases from the National Cancer Data Base. Ann Surg Oncol 14:166–173CrossRefPubMedGoogle Scholar
  7. 7.
    Hennessy BT, Krishnamurthy S, Giordano S et al (2005) Squamous cell carcinoma of the breast. J Clin Oncol 23:7827–7835CrossRefPubMedGoogle Scholar
  8. 8.
    Park HS, Park S, Kim JH et al (2010) Clinicopathologic features and outcomes of metaplastic breast carcinoma: comparison with invasive ductal carcinoma of the breast. Yonsei Med J 51:864–869CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Lim KH, Oh DY, Chie EK et al (2010) Metaplastic breast carcinoma: clinicopathologic features and prognostic value of triple negativity. Jpn J Clin Oncol 40:112–118CrossRefPubMedGoogle Scholar
  10. 10.
    Cooper CL, Karim RZ, Selinger C et al (2013) Molecular alterations in metaplastic breast carcinoma. J Clin Pathol 66:522–528CrossRefPubMedGoogle Scholar
  11. 11.
    Gwin K, Buell-Gutbrod R, Tretiakova M, Montag A (2010) Epithelial-to-mesenchymal transition in metaplastic breast carcinomas with chondroid differentiation: expression of the E-cadherin repressor Snail. Appl Immunohistochem Mol Morphol 18:526–531CrossRefPubMedGoogle Scholar
  12. 12.
    Hennessy BT, Gonzalez-Angulo AM, Stemke-Hale K et al (2009) Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics. Cancer Res 69:4116–4124CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Zhang Y, Toy KA, Kleer CG (2012) Metaplastic breast carcinomas are enriched in markers of tumor-initiating cells and epithelial to mesenchymal transition. Mod Pathol 25:178–184CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Lien HC, Hsiao YH, Lin YS et al (2007) Molecular signatures of metaplastic carcinoma of the breast by large-scale transcriptional profiling: identification of genes potentially related to epithelial-mesenchymal transition. Oncogene 26:7859–7871CrossRefPubMedGoogle Scholar
  15. 15.
    Weigelt B, Kreike B, Reis-Filho JS (2009) Metaplastic breast carcinomas are basal-like breast cancers: a genomic profiling analysis. Breast Cancer Res Treat 117:273–280CrossRefPubMedGoogle Scholar
  16. 16.
    de Beça FF, Caetano P, Gerhard R et al (2013) Cancer stem cells markers CD44, CD24 and ALDH1 in breast cancer special histological types. J Clin Pathol 66:187–191CrossRefPubMedGoogle Scholar
  17. 17.
    Lamouille S, Xu J, Derynck R (2014) Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol 15:178–196CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Gerhard R, Ricardo S, Albergaria A et al (2012) Immunohistochemical features of claudin-low intrinsic subtype in metaplastic breast carcinomas. Breast 21:354–360CrossRefPubMedGoogle Scholar
  19. 19.
    Tsang JS, Huang Y-H, Luo M-H et al (2012) Cancer stem cell markers are associated with adverse biomarker profiles and molecular subtypes of breast cancer. Breast Cancer Res Treat 136:407–417CrossRefPubMedGoogle Scholar
  20. 20.
    Ginestier C, Hur MH, Charafe-Jauffret E et al (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1:555–567CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Dontu G, Abdallah WM, Foley JM et al (2003) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17:1253–1270CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Kunju LP, Cookingham C, Toy KA et al (2011) EZH2 and ALDH-1 mark breast epithelium at risk for breast cancer development. Mod Pathol 24:786–793CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Yang L, Ren Y, Yu X et al (2014) ALDH1A1 defines invasive cancer stem-like cells and predicts poor prognosis in patients with esophageal squamous cell carcinoma. Mod Pathol 27:775–783CrossRefPubMedGoogle Scholar
  24. 24.
    Deleo AB (2012) Targeting cancer stem cells with ALDH1A1-based immunotherapy. Oncoimmunology 1:385–387CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Ponta H, Sherman L, Herrlich PA (2003) CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol 4:33–45CrossRefPubMedGoogle Scholar
  26. 26.
    Bourguignon LYW (2001) CD44-mediated oncogenic signaling and cytoskeleton activation during mammary tumor progression. J Mammary Gland Biol Neoplasia 6:287–297CrossRefPubMedGoogle Scholar
  27. 27.
    Jaggupilli A, Elkord E (2012) Significance of CD44 and CD24 as cancer stem cell markers: an enduring ambiguity. Clin Dev Immunol 2012:708036CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Xu J, Lamouille S, Derynck R (2009) TGF-b-induced epithelial to mesenchymal transition. Cell Res 19:156–172CrossRefPubMedGoogle Scholar
  29. 29.
    Thike AA, Cheok PY, Jara-Lazaro AR et al (2010) Triple-negative breast cancer: clinicopathological characteristics and relationship with basal-like breast cancer. Mod Pathol 23:123–133CrossRefPubMedGoogle Scholar
  30. 30.
    Wolff AC, Hammond MEH, Hicks DG et al (2013) Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol 31:3997–4013CrossRefPubMedGoogle Scholar
  31. 31.
    Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111CrossRefPubMedGoogle Scholar
  32. 32.
    Sarrio D, Rodriguez-Pinilla SM, Hardisson D et al (2008) Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res 68:989–997CrossRefPubMedGoogle Scholar
  33. 33.
    Choi Y, Lee HJ, Jang MH et al (2013) Epithelial-mesenchymal transition increases during the progression of in situ to invasive basal-like breast cancer. Hum Pathol 44:2581–2589CrossRefPubMedGoogle Scholar
  34. 34.
    Creighton C, Chang J, Rosen J (2010) Epithelial-mesenchymal transition (EMT) in tumor-initiating cells and its clinical implications in breast cancer. J Mammary Gland Biol Neoplasia 15:253–260CrossRefPubMedGoogle Scholar
  35. 35.
    Mani SA, Guo W, Liao MJ et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Sheridan C, Kishimoto H, Fuchs R et al (2006) CD44+/CD24− breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res 8:R59CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Lai H-W, Tseng L-M, Chang T-W et al (2013) The prognostic significance of metaplastic carcinoma of the breast (MCB)—A case controlled comparison study with infiltrating ductal carcinoma. The Breast 22:968–973CrossRefPubMedGoogle Scholar
  38. 38.
    Tan EY, Thike AA, Breast Surgical Team at Outram, Tan PH (2013) ALDH1 expression is enriched in breast cancers arising in young women but does not predict outcome. Br J Cancer 109:109–113CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Tanei T, Morimoto K, Shimazu K et al (2009) Association of breast cancer stem cells identified by aldehyde dehydrogenase 1 expression with resistance to sequential Paclitaxel and epirubicin-based chemotherapy for breast cancers. Clin Cancer Res 15:4234–4241CrossRefPubMedGoogle Scholar
  40. 40.
    Gould Rothberg BE, Bracken MB (2006) E-cadherin immunohistochemical expression as a prognostic factor in infiltrating ductal carcinoma of the breast: a systematic review and meta-analysis. Breast Cancer Res Treat 100:139–148CrossRefPubMedGoogle Scholar
  41. 41.
    Lee HE, Kim JH, Kim YJ et al (2011) An increase in cancer stem cell population after primary systemic therapy is a poor prognostic factor in breast cancer. Br J Cancer 104:1730–1738CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    Abraham B, Fritz P, McClellan M et al (2005) Prevalence of CD44+/CD24−/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis. Clin Cancer Res 11:1154–1159PubMedGoogle Scholar
  43. 43.
    Lim S, Lee M (2002) Significance of E-cadherin/beta-catenin complex and cyclin D1 in breast cancer. Oncol Rep 9:915–928PubMedGoogle Scholar
  44. 44.
    Moody SE, Perez D, Pan TC et al (2005) The transcriptional repressor Snail promotes mammary tumor recurrence. Cancer Cell 8:197–209CrossRefPubMedGoogle Scholar
  45. 45.
    Tse GM, Tan PH, Putti TC et al (2006) Metaplastic carcinoma of the breast: a clinicopathological review. J Clin Pathol 59:1079–1083CrossRefPubMedCentralPubMedGoogle Scholar
  46. 46.
    Kurian KM, Al-Nafussi A (2002) Sarcomatoid/metaplastic carcinoma of the breast: a clinicopathological study of 12 cases. Histopathology 40:58–64CrossRefPubMedGoogle Scholar
  47. 47.
    Oberman HA (1987) Metaplastic carcinoma of the breast. A clinicopathologic study of 29 patients. Am J Surg Pathol 11:918–929CrossRefPubMedGoogle Scholar
  48. 48.
    Huvos AG, Lucas JCJ, Foote FWJ (1973) Metaplastic breast carcinoma. Rare form of mammary cancer. N Y State J Med 73:1078–1082PubMedGoogle Scholar
  49. 49.
    Reis-Filho JS, Milanezi F, Steele D et al (2006) Metaplastic breast carcinomas are basal-like tumours. Histopathology 49:10–21CrossRefPubMedGoogle Scholar
  50. 50.
    Banerjee S, Reis-Filho JS, Ashley S et al (2006) Basal-like breast carcinomas: clinical outcome and response to chemotherapy. J Clin Pathol 59:729–735CrossRefPubMedCentralPubMedGoogle Scholar
  51. 51.
    Badve S, Dabbs DJ, Schnitt SJ et al (2011) Basal-like and triple-negative breast cancers: a critical review with an emphasis on the implications for pathologists and oncologists. Mod Pathol 24:157–167CrossRefPubMedGoogle Scholar
  52. 52.
    O’Toole SA, Beith JM, Millar EKA et al (2013) Therapeutic targets in triple negative breast cancer. J Clin Pathol 66:530–542CrossRefPubMedGoogle Scholar
  53. 53.
    Fulford L, Reis-Filho J, Ryder K et al (2007) Basal-like grade III invasive ductal carcinoma of the breast: patterns of metastasis and long-term survival. Breast Cancer Res 9:R4CrossRefPubMedCentralPubMedGoogle Scholar
  54. 54.
    Nakshatri H, Srour EF, Badve S (2009) Breast cancer stem cells and intrinsic subtypes: controversies rage on. Curr Stem Cell Res Ther 4:50–60CrossRefPubMedGoogle Scholar
  55. 55.
    Jeong H, Ryu Y-j, An J, Lee Y, Kim A (2012) Epithelial–mesenchymal transition in breast cancer correlates with high histological grade and triple-negative phenotype. Histopathology 60:E87–E95CrossRefPubMedGoogle Scholar
  56. 56.
    Karihtala P, Auvinen P, Kauppila S et al (2013) Vimentin, zeb1 and Sip1 are up-regulated in triple-negative and basal-like breast cancers: association with an aggressive tumour phenotype. Breast Cancer Res Treat 138:81–90CrossRefPubMedGoogle Scholar
  57. 57.
    Ali HR, Dawson S-J, Blows F et al (2011) Cancer stem cell markers in breast cancer: pathological, clinical and prognostic significance. Breast Cancer Res 13:R118CrossRefPubMedCentralPubMedGoogle Scholar
  58. 58.
    Neumeister V, Agarwal S, Bordeaux J, Camp RL, Rimm DL (2010) In situ identification of putative cancer stem cells by multiplexing ALDH1, CD44, and cytokeratin identifies breast cancer patients with poor prognosis. Am J Pathol 176:2131–2138CrossRefPubMedCentralPubMedGoogle Scholar
  59. 59.
    Vesuna F, Lisok A, Kimble B, Raman V (2009) Twist modulates breast cancer stem cells by transcriptional regulation of CD24 expression. Neoplasia 11:1318–1328PubMedCentralPubMedGoogle Scholar
  60. 60.
    Yin G, Chen R, Alvero AB et al (2010) TWISTing stemness, inflammation and proliferation of epithelial ovarian cancer cells through MIR199A2/214. Oncogene 29:3545–3553CrossRefPubMedCentralPubMedGoogle Scholar
  61. 61.
    Battula VL, Evans KW, Hollier BG et al (2010) Epithelial-mesenchymal transition-derived cells exhibit multilineage differentiation potential similar to mesenchymal stem cells. Stem Cells 28:1435–1445CrossRefPubMedCentralPubMedGoogle Scholar
  62. 62.
    Nassar A, Sookhan N, Santisteban M et al (2010) Diagnostic utility of snail in metaplastic breast carcinoma. Diagn Pathol 5:76CrossRefPubMedCentralPubMedGoogle Scholar
  63. 63.
    Brzozowska A, Sodolski T, Duma D, Mazurkiewicz T, Mazurkiewicz M (2012) Evaluation of prognostic parameters of E-cadherin status in breast cancer treatment. Ann Agric Environ Med 19:541–546PubMedGoogle Scholar
  64. 64.
    Rubin MA, Mucci NR, Figurski J et al (2001) E-cadherin expression in prostate cancer: a broad survey using high-density tissue microarray technology. Hum Pathol 32:690–697CrossRefPubMedGoogle Scholar
  65. 65.
    He X, Chen Z, Jia M, Zhao X (2013) Downregulated E-cadherin expression indicates worse prognosis in Asian patients with colorectal cancer: evidence from meta-analysis. PLoS One 8:e70858CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ming Liang Oon
    • 1
  • Aye Aye Thike
    • 2
  • Sie Yong Tan
    • 2
  • Puay Hoon Tan
    • 1
    • 2
    Email author
  1. 1.Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
  2. 2.Department of PathologySingapore General HospitalSingaporeSingapore

Personalised recommendations