Breast Cancer Research and Treatment

, Volume 149, Issue 3, pp 655–668 | Cite as

Potentiation of growth inhibition and epigenetic modulation by combination of green tea polyphenol and 5-aza-2′-deoxycytidine in human breast cancer cells

  • Tulika Tyagi
  • Justin N. Treas
  • Prathap Kumar S. Mahalingaiah
  • Kamaleshwar P. Singh
Preclinical study


Epigenetic therapy by DNA demethylating agent 5-aza-2′-deoxycytidine (5-aza 2′dC) is clinically effective in acute myeloid leukemia; however, it has shown limited results in treatment of breast cancer and has significant toxicity to normal cells. Green tea polyphenol (−)-epigallocatechin-3-gallate (EGCG) has anti-cancer and DNA demethylating properties with no significant toxicity toward normal cells. Therefore, the objective of this study was to evaluate the therapeutic efficacy of a combination of non-toxic, low dose of 5-aza 2′ dC with EGCG, on growth inhibition of breast cancer cells. Human breast cancer cell lines (MCF-7, MDA-MB 231) and non-tumorigenic MCF-10A breast epithelial cells were treated with either 5-aza 2′ dC, EGCG, or their combination for 7 days. Cell growth inhibition was determined by cell count, cell viability, cell cycle, and soft agar assay, whereas genes expression changes were determined by quantitative real-time PCR and/or Western blot analysis. Histone modifications and global DNA methylation changes were determined by Western blot and RAPD-PCR, respectively. The results revealed significantly greater inhibition of growth of breast cancer cells by co-treatment with 5-aza 2′ dC and EGCG compared to individual treatments, whereas it has no significant toxicity to MCF-10A cells. This was further confirmed by gene expression analysis. Changes in DNA methylation and histone modifications were also greater in cells with combination treatment. Findings of this study suggest that potentiation of growth inhibition of breast cancer cells by 5-aza 2′ dC and EGCG combination treatment, at least in part, is mediated by epigenetic mechanism.


Breast cancer Epigenetic therapy EGCG 5-Aza-2′-deoxycytidine 


Conflict of interest

The authors hereby disclose that there are no financial and personal relationships with other people or organizations that could inappropriately influence (bias) their work, and therefore there is no conflict of interest.


  1. 1.
    DeSantis C, Siegel R, Bandi P, Jemal A (2011) Breast cancer statistics, 2011. CA Cancer J Clin 61(6):409–418. doi: 10.3322/caac.20134 CrossRefPubMedGoogle Scholar
  2. 2.
    O’Driscoll L, Clynes M (2006) Biomarkers and multiple drug resistance in breast cancer. Curr Cancer Drug Targets 6(5):365–384CrossRefPubMedGoogle Scholar
  3. 3.
    Pathiraja TN, Stearns V, Oesterreich S (2010) Epigenetic regulation in estrogen receptor positive breast cancer—role in treatment response. J mammary gland biol neoplasia 15(1):35–47. doi: 10.1007/s10911-010-9166-0 CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Horwitz SB, Lothstein L, Manfredi JJ, Mellado W, Parness J, Roy SN, Schiff PB, Sorbara L, Zeheb R (1986) Taxol: mechanisms of action and resistance. Ann N Y Acad Sci 466:733–744CrossRefPubMedGoogle Scholar
  5. 5.
    Poklar N, Pilch DS, Lippard SJ, Redding EA, Dunham SU, Breslauer KJ (1996) Influence of cisplatin intrastrand crosslinking on the conformation, thermal stability, and energetics of a 20-mer DNA duplex. Proc Natl Acad Sci USA 93(15):7606–7611CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Yang XH, Sladek TL, Liu X, Butler BR, Froelich CJ, Thor AD (2001) Reconstitution of caspase 3 sensitizes MCF-7 breast cancer cells to doxorubicin- and etoposide-induced apoptosis. Cancer Res 61(1):348–354PubMedGoogle Scholar
  7. 7.
    Chari RV (2008) Targeted cancer therapy: conferring specificity to cytotoxic drugs. Acc Chem Res 41(1):98–107. doi: 10.1021/ar700108g CrossRefPubMedGoogle Scholar
  8. 8.
    Huang J, Plass C, Gerhäuser C (2011) Cancer chemoprevention by targeting the epigenome. Curr Drug Targets 12(13):1925–1956CrossRefPubMedGoogle Scholar
  9. 9.
    Lo PK, Sukumar S (2008) Epigenomics and breast cancer. Pharmacogenomics 9(12):1879–1902. doi: 10.2217/14622416.9.12.1879 CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3(6):415–428. doi: 10.1038/nrg816 PubMedGoogle Scholar
  11. 11.
    Rius M, Lyko F (2012) Epigenetic cancer therapy: rationales, targets and drugs. Oncogene 31(39):4257–4265. doi: 10.1038/onc.2011.601 CrossRefPubMedGoogle Scholar
  12. 12.
    Brennan K, Garcia-Closas M, Orr N, Fletcher O, Jones M, Ashworth A, Swerdlow A, Thorne H, Riboli E, Vineis P, Dorronsoro M, Clavel-Chapelon F, Panico S, Onland-Moret NC, Trichopoulos D, Kaaks R, Khaw KT, Brown R, Flanagan JM (2012) Intragenic ATM methylation in peripheral blood DNA as a biomarker of breast cancer risk. Cancer Res 72(9):2304–2313. doi: 10.1158/0008-5472.can-11-3157 CrossRefPubMedGoogle Scholar
  13. 13.
    Christman JK (2002) 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene 21(35):5483–5495. doi: 10.1038/sj.onc.1205699 CrossRefPubMedGoogle Scholar
  14. 14.
    Ghoshal K, Datta J, Majumder S, Bai S, Kutay H, Motiwala T, Jacob ST (2005) 5-Aza-deoxycytidine induces selective degradation of DNA methyltransferase 1 by a proteasomal pathway that requires the KEN box, bromo-adjacent homology domain, and nuclear localization signal. Mol Cell Biol 25(11):4727–4741. doi: 10.1128/mcb.25.11.4727-4741.2005 CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Jabbour E, Issa JP, Garcia-Manero G, Kantarjian H (2008) Evolution of decitabine development: accomplishments, ongoing investigations, and future strategies. Cancer 112(11):2341–2351. doi: 10.1002/cncr.23463 CrossRefPubMedGoogle Scholar
  16. 16.
    Connolly R, Stearns V (2012) Epigenetics as a therapeutic target in breast cancer. J mammary gland biol neoplasia 17(3–4):191–204. doi: 10.1007/s10911-012-9263-3 CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Singh BN, Shankar S, Srivastava RK (2011) Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem Pharmacol 82(12):1807–1821. doi: 10.1016/j.bcp.2011.07.093 CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Thangapazham RL, Singh AK, Sharma A, Warren J, Gaddipati JP, Maheshwari RK (2007) Green tea polyphenols and its constituent epigallocatechin gallate inhibits proliferation of human breast cancer cells in vitro and in vivo. Cancer Lett 245(1–2):232–241. doi: 10.1016/j.canlet.2006.01.027 CrossRefPubMedGoogle Scholar
  19. 19.
    Ahmad N, Feyes DK, Nieminen AL, Agarwal R, Mukhtar H (1997) Green tea constituent epigallocatechin-3-gallate and induction of apoptosis and cell cycle arrest in human carcinoma cells. J Natl Cancer Inst 89(24):1881–1886CrossRefPubMedGoogle Scholar
  20. 20.
    Khan N, Mukhtar H (2008) Multitargeted therapy of cancer by green tea polyphenols. Cancer Lett 269(2):269–280. doi: 10.1016/j.canlet.2008.04.014 CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Yuanyuan L, Yih-Ying Y, Meeran SM, Tollefsbol TO (2010) Synergistic epigenetic reactivation of estrogen receptor-α (ERa) by combined green tea polyphenol and histone deacetylase inhibitor in ERα-negative breast cancer cells. Mol Cancer 9:274–285. doi: 10.1186/1476-4598-9-274 CrossRefGoogle Scholar
  22. 22.
    Lee WJ, Shim J-Y, Zhu BT (2005) Mechanisms for the inhibition of DNA methyltransferases by tea Catechins and bioflavonoids. Mol Pharmacol 68(4):1018–1030. doi: 10.1124/mol.104.008367 CrossRefPubMedGoogle Scholar
  23. 23.
    Fang MZ, Wang Y, Ai N, Hou Z, Sun Y, Lu H, Welsh W, Yang CS (2003) Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res 63(22):7563–7570PubMedGoogle Scholar
  24. 24.
    Nandakumar V, Vaid M, Katiyar SK (2011) (-)-Epigallocatechin-3-gallate reactivates silenced tumor suppressor genes, Cip1/p21 and p16INK4a, by reducing DNA methylation and increasing histones acetylation in human skin cancer cells. Carcinogenesis 32(4):537–544. doi: 10.1093/carcin/bgq285 CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Pandey M, Shukla S, Gupta S (2010) Promoter demethylation and chromatin remodeling by green tea polyphenols leads to re-expression of GSTP1 in human prostate cancer cells. Int J cancer J Internat Du Cancer 126(11):2520–2533. doi: 10.1002/ijc.24988 Google Scholar
  26. 26.
    Thakur VS, Gupta K, Gupta S (2012) The chemopreventive and chemotherapeutic potentials of tea polyphenols. Curr Pharm Biotechnol 13(1):191–199CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Ciftci K, Su J, Trovitch PB (2003) Growth factors and chemotherapeutic modulation of breast cancer cells. J Pharm Pharmacol 55(8):1135–1141. doi: 10.1211/002235703322277177 CrossRefPubMedGoogle Scholar
  28. 28.
    Golubovskaya VM, Virnig C, Cance WG (2008) TAE226-induced apoptosis in breast cancer cells with overexpressed Src or EGFR. Mol Carcinog 47(3):222–234. doi: 10.1002/mc.20380 CrossRefPubMedGoogle Scholar
  29. 29.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408. doi: 10.1006/meth.2001.1262 CrossRefPubMedGoogle Scholar
  30. 30.
    Singh KP (2014) Screening of DNA methylation changes by methylation-sensitive random amplified polymorphic DNA-polymerase chain reaction (MS-RAPD-PCR). Methods Mol Biol 1105:71–81. doi: 10.1007/978-1-62703-739-6_6 CrossRefPubMedGoogle Scholar
  31. 31.
    Gupta RC (1984) Nonrandom binding of the carcinogen N-hydroxy-2-acetylaminofluorene to repetitive. Proc Natl Acad Sci USA 81(22):6943–6947CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Al-Romaih K, Somers GR, Bayani J, Hughes S, Prasad M, Cutz JC, Xue H, Zielenska M, Wang Y, Squire JA (2007) Modulation by decitabine of gene expression and growth of osteosarcoma U2OS cells in vitro and in xenografts: identification of apoptotic genes as targets for demethylation. Cancer Cell Int 7:14. doi: 10.1186/1475-2867-7-14 CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Valdez BC, Li Y, Murray D, Corn P, Champlin RE, Andersson BS (2010) 5-Aza-2′-deoxycytidine sensitizes busulfan-resistant myeloid leukemia cells by regulating expression of genes involved in cell cycle checkpoint and apoptosis. Leuk Res 34(3):364–372. doi: 10.1016/j.leukres.2009.08.014 CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Nabilsi NH, Broaddus RR, Loose DS (2009) DNA methylation inhibits p53-mediated survivin repression. Oncogene 28(19):2046–2050. doi: 10.1038/onc.2009.62 CrossRefPubMedGoogle Scholar
  35. 35.
    Shin DY, Kang HS, Kim G-Y, Kim W-J, Yoo YH, Choi YH (2013) Decitabine, a DNA methyltransferases inhibitor, induces cell cycle arrest at G2/M phase through p53-independent pathway in human cancer cells. Biomed Pharmacother 67(4):305–311. doi: 10.1016/j.biopha.2013.01.004 CrossRefPubMedGoogle Scholar
  36. 36.
    Lavelle D, DeSimone J, Hankewych M, Kousnetzova T, Chen YH (2003) Decitabine induces cell cycle arrest at the G1 phase via p21(WAF1) and the G2/M phase via the p38 MAP kinase pathway. Leuk Res 27(11):999–1007CrossRefPubMedGoogle Scholar
  37. 37.
    Valencia A, Roman-Gomez J, Cervera J, Such E, Barragan E, Bolufer P, Moscardo F, Sanz GF, Sanz MA (2009) Wnt signaling pathway is epigenetically regulated by methylation of Wnt antagonists in acute myeloid leukemia. Leukemia 23(9):1658–1666. doi: 10.1038/leu.2009.86 CrossRefPubMedGoogle Scholar
  38. 38.
    Ahn WS, Huh SW, Bae SM, Lee IP, Lee JM, Namkoong SE, Kim CK, Sin JI (2003) A major constituent of green tea, EGCG, inhibits the growth of a human cervical cancer cell line, CaSki cells, through apoptosis, G(1) arrest, and regulation of gene expression. DNA Cell Biol 22(3):217–224. doi: 10.1089/104454903321655846 CrossRefPubMedGoogle Scholar
  39. 39.
    Stuart EC, Scandlyn MJ, Rosengren RJ (2006) Role of epigallocatechin gallate (EGCG) in the treatment of breast and prostate cancer. Life Sci 79(25):2329–2336. doi: 10.1016/j.lfs.2006.07.036 CrossRefPubMedGoogle Scholar
  40. 40.
    Huh SW, Bae SM, Kim YW, Lee JM, Namkoong SE, Lee IP, Kim SH, Kim CK, Ahn WS (2004) Anticancer effects of (-)-epigallocatechin-3-gallate on ovarian carcinoma cell lines. Gynecol Oncol 94(3):760–768. doi: 10.1016/j.ygyno.2004.05.031 CrossRefPubMedGoogle Scholar
  41. 41.
    Roy AM, Baliga MS, Katiyar SK (2005) Epigallocatechin-3-gallate induces apoptosis in estrogen receptor-negative human breast carcinoma cells via modulation in protein expression of p53 and Bax and caspase-3 activation. Mol Cancer Ther 4(1):81–90PubMedGoogle Scholar
  42. 42.
    Kondo T, Ohta T, Igura K, Hara Y, Kaji K (2002) Tea catechins inhibit angiogenesis in vitro, measured by human endothelial cell growth, migration and tube formation, through inhibition of VEGF receptor binding. Cancer Lett 180(2):139–144CrossRefPubMedGoogle Scholar
  43. 43.
    Liang YC, Lin-shiau SY, Chen CF, Lin JK (1997) Suppression of extracellular signals and cell proliferation through EGF receptor binding by (-)-epigallocatechin gallate in human A431 epidermoid carcinoma cells. J Cell Biochem 67(1):55–65CrossRefPubMedGoogle Scholar
  44. 44.
    Shimizu M, Deguchi A, Hara Y, Moriwaki H, Weinstein IB (2005) EGCG inhibits activation of the insulin-like growth factor-1 receptor in human colon cancer cells. Biochem Biophys Res commun 334(3):947–953. doi: 10.1016/j.bbrc.2005.06.182 CrossRefPubMedGoogle Scholar
  45. 45.
    Aktas O, Prozorovski T, Smorodchenko A, Savaskan NE, Lauster R, Kloetzel PM, Infante-Duarte C, Brocke S, Zipp F (2004) Green tea epigallocatechin-3-gallate mediates T cellular NF-kappa B inhibition and exerts neuroprotection in autoimmune encephalomyelitis. J immunol 173(9):5794–5800CrossRefPubMedGoogle Scholar
  46. 46.
    Dong Z, Ma W, Huang C, Yang CS (1997) Inhibition of tumor promoter-induced activator protein 1 activation and cell transformation by tea polyphenols, (-)-epigallocatechin gallate, and theaflavins. Cancer Res 57(19):4414–4419PubMedGoogle Scholar
  47. 47.
    Reiter CE, Kim JA, Quon MJ (2010) Green tea polyphenol epigallocatechin gallate reduces endothelin-1 expression and secretion in vascular endothelial cells: roles for AMP-activated protein kinase, Akt, and FOXO1. Endocrinology 151(1):103–114. doi: 10.1210/en.2009-0997 CrossRefPubMedCentralPubMedGoogle Scholar
  48. 48.
    Townsend PA, Scarabelli TM, Pasini E, Gitti G, Menegazzi M, Suzuki H, Knight RA, Latchman DS, Stephanou A (2004) Epigallocatechin-3-gallate inhibits STAT-1 activation and protects cardiac myocytes from ischemia/reperfusion-induced apoptosis. FASEB J 18(13):1621–1623. doi: 10.1096/fj.04-1716fje PubMedGoogle Scholar
  49. 49.
    Daskalakis M, Blagitko-Dorfs N, Hackanson B (2010) Decitabine. Recent Results in Cancer researchFortschritte der Krebsforschung Progres dans les recherches sur le cancer 184:131–157. doi: 10.1007/978-3-642-01222-8_10 Google Scholar
  50. 50.
    Brown R, Plumb JA (2004) Demethylation of DNA by decitabine in cancer chemotherapy. Expert Rev Anticancer Ther 4(4):501–510. doi: 10.1586/14737140.4.4.501 CrossRefPubMedGoogle Scholar
  51. 51.
    Ververis K, Karagiannis TC (2012) An atlas of histone deacetylase expression in breast cancer: fluorescence methodology for comparative semi-quantitative analysis. Am J transl res 4(1):24–43PubMedCentralPubMedGoogle Scholar
  52. 52.
    Moseley VR, Morris J, Knackstedt RW, Wargovich MJ (2013) Green tea polyphenol epigallocatechin 3-gallate, contributes to the degradation of DNMT3A and HDAC3 in HCT 116 human colon cancer cells. Anticancer Res 33(12):5325–5333PubMedCentralPubMedGoogle Scholar
  53. 53.
    Dammann R, Yang G, Pfeifer GP (2001) Hypermethylation of the cpG island of Ras association domain family 1A (RASSF1A), a putative tumor suppressor gene from the 3p21.3 locus, occurs in a large percentage of human breast cancers. Cancer Res 61(7):3105–3109PubMedGoogle Scholar
  54. 54.
    Bae YK, Brown A, Garrett E, Bornman D, Fackler MJ, Sukumar S, Herman JG, Gabrielson E (2004) Hypermethylation in histologically distinct classes of breast cancer. Clin Cancer Res 10(18 Pt 1):5998–6005. doi: 10.1158/1078-0432.ccr-04-0667 CrossRefPubMedGoogle Scholar
  55. 55.
    Cheung P, Tanner KG, Cheung WL, Sassone-Corsi P, Denu JM, Allis CD (2000) Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol Cell 5(6):905–915CrossRefPubMedGoogle Scholar
  56. 56.
    Thomson S, Clayton AL, Mahadevan LC (2001) Independent dynamic regulation of histone phosphorylation and acetylation during immediate-early gene induction. Mol Cell 8(6):1231–1241CrossRefPubMedGoogle Scholar
  57. 57.
    Esteller M, Levine R, Baylin SB, Ellenson LH, Herman JG (1998) MLH1 promoter hypermethylation is associated with the microsatellite instability phenotype in sporadic endometrial carcinomas. Oncogene 17(18):2413–2417. doi: 10.1038/sj.onc.1202178 CrossRefPubMedGoogle Scholar
  58. 58.
    Baylin SB (2005) DNA methylation and gene silencing in cancer. Nat Clin Pract Oncol 2(Suppl 1):S4–S11. doi: 10.1038/ncponc0354 CrossRefPubMedGoogle Scholar
  59. 59.
    Widschwendter M, Jones PA (2002) DNA methylation and breast carcinogenesis. Oncogene 21(35):5462–5482. doi: 10.1038/sj.onc.1205606 CrossRefPubMedGoogle Scholar
  60. 60.
    Esteller M (2002) CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene 21(35):5427–5440. doi: 10.1038/sj.onc.1205600 CrossRefPubMedGoogle Scholar
  61. 61.
    Esteller M, Silva JM, Dominguez G, Bonilla F, Matias-Guiu X, Lerma E, Bussaglia E, Prat J, Harkes IC, Repasky EA, Gabrielson E, Schutte M, Baylin SB, Herman JG (2000) Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J Natl Cancer Inst 92(7):564–569CrossRefPubMedGoogle Scholar
  62. 62.
    Chen ZP, Schell JB, Ho CT, Chen KY (1998) Green tea epigallocatechin gallate shows a pronounced growth inhibitory effect on cancerous cells but not on their normal counterparts. Cancer Lett 129(2):173–179CrossRefPubMedGoogle Scholar
  63. 63.
    Li WG, Li QH, Tan Z (2005) Epigallocatechin gallate induces telomere fragmentation in HeLa and 293 but not in MRC-5 cells. Life Sci 76(15):1735–1746. doi: 10.1016/j.lfs.2004.09.024 CrossRefPubMedGoogle Scholar
  64. 64.
    Mittal A, Pate MS, Wylie RC, Tollefsbol TO, Katiyar SK (2004) EGCG down-regulates telomerase in human breast carcinoma MCF-7 cells, leading to suppression of cell viability and induction of apoptosis. Int J Oncol 24(3):703–710PubMedGoogle Scholar
  65. 65.
    Corrocher R, Casaril M, Bellisola G, Gabrielli GB, Nicoli N, Guidi GC, De Sandre G (1986) Severe impairment of antioxidant system in human hepatoma. Cancer 58(8):1658–1662CrossRefPubMedGoogle Scholar
  66. 66.
    Toyokuni S, Okamoto K, Yodoi J (1995) Persistent oxidative stress in cancer. FEBS Letters 358(1):1–3. doi: 10.1016/0014-5793(94)01368-B CrossRefPubMedGoogle Scholar
  67. 67.
    Lambert JD, Elias RJ (2010) The antioxidant and pro-oxidant activities of green tea polyphenols: a role in cancer prevention. Arch Biochem Biophys 501(1):65–72. doi: 10.1016/ CrossRefPubMedCentralPubMedGoogle Scholar
  68. 68.
    Nakagawa H, Hasumi K, Woo JT, Nagai K, Wachi M (2004) Generation of hydrogen peroxide primarily contributes to the induction of Fe(II)-dependent apoptosis in Jurkat cells by (-)-epigallocatechin gallate. Carcinogenesis 25(9):1567–1574. doi: 10.1093/carcin/bgh168 CrossRefPubMedGoogle Scholar
  69. 69.
    Yang GY, Liao J, Li C, Chung J, Yurkow EJ, Ho CT, Yang CS (2000) Effect of black and green tea polyphenols on c-jun phosphorylation and H(2)O(2) production in transformed and non-transformed human bronchial cell lines: possible mechanisms of cell growth inhibition and apoptosis induction. Carcinogenesis 21(11):2035–2039CrossRefPubMedGoogle Scholar
  70. 70.
    Hsuuw YD, Chan WH (2007) Epigallocatechin gallate dose-dependently induces apoptosis or necrosis in human MCF-7 cells. Ann N Y Acad Sci 1095:428–440. doi: 10.1196/annals.1397.046 CrossRefPubMedGoogle Scholar
  71. 71.
    Chisholm K, Bray BJ, Rosengren RJ (2004) Tamoxifen and epigallocatechin gallate are synergistically cytotoxic to MDA-MB-231 human breast cancer cells. Anticancer Drugs 15(9):889–897CrossRefPubMedGoogle Scholar
  72. 72.
    Hsieh TC, Wu JM (2008) Suppression of cell proliferation and gene expression by combinatorial synergy of EGCG, resveratrol and gamma-tocotrienol in estrogen receptor-positive MCF-7 breast cancer cells. Int J Oncol 33(4):851–859PubMedGoogle Scholar
  73. 73.
    Chen MY, Liao WS, Lu Z, Bornmann WG, Hennessey V, Washington MN, Rosner GL, Yu Y, Ahmed AA, Bast RC Jr (2011) Decitabine and suberoylanilide hydroxamic acid (SAHA) inhibit growth of ovarian cancer cell lines and xenografts while inducing expression of imprinted tumor suppressor genes, apoptosis, G2/M arrest, and autophagy. Cancer 117(19):4424–4438. doi: 10.1002/cncr.26073 CrossRefPubMedCentralPubMedGoogle Scholar
  74. 74.
    Zhu WG, Otterson GA (2003) The interaction of histone deacetylase inhibitors and DNA methyltransferase inhibitors in the treatment of human cancer cells. Curr Med Chem Anticancer Agents 3(3):187–199CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Tulika Tyagi
    • 1
  • Justin N. Treas
    • 1
  • Prathap Kumar S. Mahalingaiah
    • 1
  • Kamaleshwar P. Singh
    • 1
  1. 1.Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH)Texas Tech UniversityLubbockUSA

Personalised recommendations