Breast Cancer Research and Treatment

, Volume 149, Issue 3, pp 727–741 | Cite as

Differential expression of cancer-associated fibroblast-related proteins according to molecular subtype and stromal histology in breast cancer

  • Sung Yeon Park
  • Hye Min Kim
  • Ja Seung KooEmail author
Preclinical study


The purpose of this study aimed to investigate the clinicopathologic characteristics of breast cancer according to its cancer-associated fibroblast (CAF) phenotype. Immunohistochemistry staining of estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2 (HER-2), Ki-67, podoplanin, prolyl 4-hydroxylase, fibroblast activation protein alpha (FAPα), S100A4, platelet-derived growth factor receptor alpha (PDGFRα), PDGFRβ, and chondroitin sulfate proteoglycan (NG2) was performed on tissue microarray consisting of 642 breast cancer cases. Samples were categorized into luminal A, luminal B, HER-2, or triple-negative breast cancer (TNBC) according to immunohistochemical results, whereas tumor stroma was classified into desmoplastic, sclerotic, normal-like, or inflammatory type based on histological findings. Expression of CAF-related proteins in the stroma differed depending on breast cancer molecular subtypes. All CAF-related protein expression was high (p < 0.05) in HER-2 type, whereas in luminal A, the expression of FAPα, PDGFα, PDGFβ, and NG2 was low, and in TNBC, the expression of podoplanin, prolyl 4-hydroxylase, and S100A4 was low. In the stromal component, CAF-related protein expression differed according to stromal phenotype (p < 0.001). The desmoplastic type showed high expression of podoplanin, prolyl 4-hydroxylase, S100A4, PDGFRα, and PDGFRβ, whereas the sclerotic type exhibited low expression of FAPα, PDGFα, PDGFβ, and NG2. The inflammatory type had high expression of FAPα and NG2 with low podoplanin, while normal-like type showed low expression of prolyl 4-hydroxylase and S100A4. Our results suggested that differential CAF-related protein expression depended on the molecular subtypes and stromal histologic features of breast cancer, indicating that in the future, this system could potentially use these markers for prognosis prediction and targeted therapy of breast cancer.


Breast cancer Cancer-associated fibroblast Molecular subtype Tumor stroma 



This study was supported by a grant from National R&D Program for Cancer Control, Ministry of Health & Welfare, Republic of Korea (1420080). This study was supported by a faculty research grant from Yonsei University College of Medicine for 2013 (6-2014-0131).

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Franco OE, Shaw AK, Strand DW et al (2010) Cancer associated fibroblasts in cancer pathogenesis. Semin Cell Dev Biol 21(1):33–39. doi: 10.1016/j.semcdb.2009.10.010 CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Mueller MM, Fusenig NE (2004) Friends or foes–bipolar effects of the tumour stroma in cancer. Nat Rev Cancer 4(11):839–849. doi: 10.1038/nrc1477 CrossRefPubMedGoogle Scholar
  3. 3.
    Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6(5):392–401. doi: 10.1038/nrc1877 CrossRefPubMedGoogle Scholar
  4. 4.
    Bhowmick NA, Neilson EG, Moses HL (2004) Stromal fibroblasts in cancer initiation and progression. Nature 432(7015):332–337. doi: 10.1038/nature03096 CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Mueller L, Goumas FA, Affeldt M et al (2007) Stromal fibroblasts in colorectal liver metastases originate from resident fibroblasts and generate an inflammatory microenvironment. Am J Pathol 171(5):1608–1618. doi: 10.2353/ajpath.2007.060661 CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Pavlides S, Whitaker-Menezes D, Castello-Cros R et al (2009) The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 8(23):3984–4001CrossRefPubMedGoogle Scholar
  7. 7.
    Karnoub AE, Dash AB, Vo AP et al (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449(7162):557–563. doi: 10.1038/nature06188 CrossRefPubMedGoogle Scholar
  8. 8.
    Muerkoster S, Wegehenkel K, Arlt A et al (2004) Tumor stroma interactions induce chemoresistance in pancreatic ductal carcinoma cells involving increased secretion and paracrine effects of nitric oxide and interleukin-1beta. Cancer Res 64(4):1331–1337CrossRefPubMedGoogle Scholar
  9. 9.
    Fearon DT (2014) The carcinoma-associated fibroblast expressing fibroblast activation protein and escape from immune surveillance. Cancer Immunol Res 2(3):187–193. doi: 10.1158/2326-6066.cir-14-0002 CrossRefPubMedGoogle Scholar
  10. 10.
    Ostman A (2014) Cancer-associated fibroblasts: recent developments and emerging challenges. Semin Cancer Biol 25:1–2. doi: 10.1016/j.semcancer.2014.02.004 CrossRefPubMedGoogle Scholar
  11. 11.
    Desmouliere A, Guyot C, Gabbiani G (2004) The stroma reaction myofibroblast: a key player in the control of tumor cell behavior. Int J Dev Biol 48(5–6):509–517. doi: 10.1387/ijdb.041802ad CrossRefPubMedGoogle Scholar
  12. 12.
    De Wever O, Nguyen QD, Van Hoorde L et al (2004) Tenascin-C and SF/HGF produced by myofibroblasts in vitro provide convergent pro-invasive signals to human colon cancer cells through RhoA and Rac. FASEB J 18(9):1016–1018. doi: 10.1096/fj.03-1110fje PubMedGoogle Scholar
  13. 13.
    Sugimoto H, Mundel TM, Kieran MW et al (2006) Identification of fibroblast heterogeneity in the tumor microenvironment. Cancer Biol Ther 5(12):1640–1646CrossRefPubMedGoogle Scholar
  14. 14.
    Pietras K, Sjoblom T, Rubin K et al (2003) PDGF receptors as cancer drug targets. Cancer Cell 3(5):439–443CrossRefPubMedGoogle Scholar
  15. 15.
    Kraman M, Bambrough PJ, Arnold JN et al (2010) Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-alpha. Science 330(6005):827–830. doi: 10.1126/science.1195300 CrossRefPubMedGoogle Scholar
  16. 16.
    Kawase A, Ishii G, Nagai K et al (2008) Podoplanin expression by cancer associated fibroblasts predicts poor prognosis of lung adenocarcinoma. Int J Cancer 123(5):1053–1059. doi: 10.1002/ijc.23611 CrossRefPubMedGoogle Scholar
  17. 17.
    Kojima Y, Acar A, Eaton EN et al (2010) Autocrine TGF-beta and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proc Natl Acad Sci USA 107(46):20009–20014. doi: 10.1073/pnas.1013805107 CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Cortez E, Roswall P, Pietras K (2014) Functional subsets of mesenchymal cell types in the tumor microenvironment. Semin Cancer Biol 25:3–9. doi: 10.1016/j.semcancer.2013.12.010 CrossRefPubMedGoogle Scholar
  19. 19.
    Scanlan MJ, Raj BK, Calvo B et al (1994) Molecular cloning of fibroblast activation protein alpha, a member of the serine protease family selectively expressed in stromal fibroblasts of epithelial cancers. Proc Natl Acad Sci USA 91(12):5657–5661CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Lee HO, Mullins SR, Franco-Barraza J et al (2011) FAP-overexpressing fibroblasts produce an extracellular matrix that enhances invasive velocity and directionality of pancreatic cancer cells. BMC Cancer 11:245. doi: 10.1186/1471-2407-11-245 CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    O’Connell JT, Sugimoto H, Cooke VG et al (2011) VEGF-A and Tenascin-C produced by S100A4+ stromal cells are important for metastatic colonization. Proc Natl Acad Sci USA 108(38):16002–16007. doi: 10.1073/pnas.1109493108 CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Zhang J, Chen L, Xiao M et al (2011) FSP1+ fibroblasts promote skin carcinogenesis by maintaining MCP-1-mediated macrophage infiltration and chronic inflammation. Am J Pathol 178(1):382–390. doi: 10.1016/j.ajpath.2010.11.017 CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Zhang J, Chen L, Liu X et al (2013) Fibroblast-specific protein 1/S100A4-positive cells prevent carcinoma through collagen production and encapsulation of carcinogens. Cancer Res 73(9):2770–2781. doi: 10.1158/0008-5472.can-12-3022 CrossRefPubMedGoogle Scholar
  24. 24.
    Crawford Y, Kasman I, Yu L et al (2009) PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell 15(1):21–34. doi: 10.1016/j.ccr.2008.12.004 CrossRefPubMedGoogle Scholar
  25. 25.
    Erez N, Truitt M, Olson P et al (2010) Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell 17(2):135–147. doi: 10.1016/j.ccr.2009.12.041 CrossRefPubMedGoogle Scholar
  26. 26.
    Gao MQ, Kim BG, Kang S et al (2013) Human breast cancer-associated fibroblasts enhance cancer cell proliferation through increased TGF-alpha cleavage by ADAM17. Cancer Lett 336(1):240–246. doi: 10.1016/j.canlet.2013.05.011 CrossRefPubMedGoogle Scholar
  27. 27.
    Hu M, Yao J, Carroll DK et al (2008) Regulation of in situ to invasive breast carcinoma transition. Cancer Cell 13(5):394–406. doi: 10.1016/j.ccr.2008.03.007 CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Qian BZ, Li J, Zhang H et al (2011) CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475(7355):222–225. doi: 10.1038/nature10138 CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Mueller KL, Madden JM, Zoratti GL et al (2012) Fibroblast-secreted hepatocyte growth factor mediates epidermal growth factor receptor tyrosine kinase inhibitor resistance in triple-negative breast cancers through paracrine activation of Met. Breast Cancer Res 14(4):R104. doi: 10.1186/bcr3224 CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Finak G, Bertos N, Pepin F et al (2008) Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 14(5):518–527. doi: 10.1038/nm1764 CrossRefPubMedGoogle Scholar
  31. 31.
    Elston CW, Ellis IO (1991) Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 19(5):403–410CrossRefPubMedGoogle Scholar
  32. 32.
    Hammond ME, Hayes DF, Dowsett M et al (2010) American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Clin Oncol 28(16):2784–2795. doi: 10.1200/jco.2009.25.6529 CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Wolff AC, Hammond ME, Schwartz JN et al (2007) American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol 25(1):118–145. doi: 10.1200/jco.2006.09.2775 CrossRefPubMedGoogle Scholar
  34. 34.
    Henry LR, Lee HO, Lee JS et al (2007) Clinical implications of fibroblast activation protein in patients with colon cancer. Clin Cancer Res 13(6):1736–1741. doi: 10.1158/1078-0432.ccr-06-1746 CrossRefPubMedGoogle Scholar
  35. 35.
    Goldhirsch A, Wood WC, Coates AS et al (2011) Strategies for subtypes–dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol 22(8):1736–1747. doi: 10.1093/annonc/mdr304 CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Perou CM, Sorlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752. doi: 10.1038/35021093 CrossRefPubMedGoogle Scholar
  37. 37.
    Sorlie T, Perou CM, Tibshirani R et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98(19):10869–10874. doi: 10.1073/pnas.191367098 CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    van ‘t Veer LJ, Dai H, van de Vijver MJ et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871):530–536. doi: 10.1038/415530a CrossRefGoogle Scholar
  39. 39.
    Sorlie T, Tibshirani R, Parker J et al (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100(14):8418–8423. doi: 10.1073/pnas.0932692100 CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    De Wever O, Mareel M (2003) Role of tissue stroma in cancer cell invasion. J Pathol 200(4):429–447. doi: 10.1002/path.1398 CrossRefPubMedGoogle Scholar
  41. 41.
    Tchou J, Kossenkov AV, Chang L et al (2012) Human breast cancer associated fibroblasts exhibit subtype specific gene expression profiles. BMC Med Genomics 5:39. doi: 10.1186/1755-8794-5-39 CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    Ahn S, Cho J, Sung J et al (2012) The prognostic significance of tumor-associated stroma in invasive breast carcinoma. Tumour Biol 33(5):1573–1580. doi: 10.1007/s13277-012-0411-6 CrossRefPubMedGoogle Scholar
  43. 43.
    Shao ZM, Nguyen M, Barsky SH (2000) Human breast carcinoma desmoplasia is PDGF initiated. Oncogene 19(38):4337–4345. doi: 10.1038/sj.onc.1203785 CrossRefPubMedGoogle Scholar
  44. 44.
    Zhai X, Zhu H, Wang W et al (2014) Abnormal expression of EMT-related proteins, S100A4, vimentin and E-cadherin, is correlated with clinicopathological features and prognosis in HCC. Med Oncol 31(6):970. doi: 10.1007/s12032-014-0970-z CrossRefPubMedGoogle Scholar
  45. 45.
    Chong HI, Lee JH, Yoon MS et al (2014) Prognostic value of cytoplasmic expression of S100A4 protein in endometrial carcinoma. Oncol Rep 31(6):2701–2707. doi: 10.3892/or.2014.3149 PubMedGoogle Scholar
  46. 46.
    Bai H, Qian JL, Han BH (2014) S100A4 is an independent prognostic factor for patients with lung cancer: a meta-analysis. Genet Test Mol Biomark 18(5):371–374. doi: 10.1089/gtmb.2013.0471 CrossRefGoogle Scholar
  47. 47.
    Tsukamoto N, Egawa S, Akada M et al (2013) The expression of S100A4 in human pancreatic cancer is associated with invasion. Pancreas 42(6):1027–1033. doi: 10.1097/MPA.0b013e31828804e7 CrossRefPubMedGoogle Scholar
  48. 48.
    Chuang WY, Yeh CJ, Chao YK et al (2014) Concordant podoplanin expression in cancer-associated fibroblasts and tumor cells is an adverse prognostic factor in esophageal squamous cell carcinoma. Int J Clin Exp Pathol 7(8):4847–4856PubMedCentralPubMedGoogle Scholar
  49. 49.
    Preuss SF, Anagiotos A, Seuthe IM et al (2014) Expression of podoplanin and prognosis in oropharyngeal cancer. Eur Arch Otorhinolaryngol. doi: 10.1007/s00405-014-3105-4 Google Scholar
  50. 50.
    Yuan D, Liu B, Liu K et al (2013) Overexpression of fibroblast activation protein and its clinical implications in patients with osteosarcoma. J Surg Oncol 108(3):157–162. doi: 10.1002/jso.23368 CrossRefPubMedGoogle Scholar
  51. 51.
    Shi M, Yu DH, Chen Y et al (2012) Expression of fibroblast activation protein in human pancreatic adenocarcinoma and its clinicopathological significance. World J Gastroenterol 18(8):840–846. doi: 10.3748/wjg.v18.i8.840 CrossRefPubMedCentralPubMedGoogle Scholar
  52. 52.
    Moorman AM, Vink R, Heijmans HJ et al (2012) The prognostic value of tumour-stroma ratio in triple-negative breast cancer. Eur J Surg Oncol 38(4):307–313. doi: 10.1016/j.ejso.2012.01.002 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Cheongna Dalton SchoolIncheonSouth Korea
  2. 2.Department of Pathology, Severance HospitalYonsei University College of MedicineSeoulSouth Korea

Personalised recommendations