Breast Cancer Research and Treatment

, Volume 150, Issue 1, pp 127–139 | Cite as

Impact of body mass index on neoadjuvant treatment outcome: a pooled analysis of eight prospective neoadjuvant breast cancer trials

  • Caterina Fontanella
  • Bianca Lederer
  • Stephan Gade
  • Mieke Vanoppen
  • Jens Uwe Blohmer
  • Serban Dan Costa
  • Carsten Denkert
  • Holger Eidtmann
  • Bernd Gerber
  • Claus Hanusch
  • Jörn Hilfrich
  • Jens Huober
  • Andreas Schneeweiss
  • Stefan Paepke
  • Christian Jackisch
  • Keyur Mehta
  • Valentina Nekljudova
  • Michael Untch
  • Patrick Neven
  • Gunter von Minckwitz
  • Sibylle Loibl
Clinical Trial


Obesity is associated with an increased risk of breast cancer (BC) and poorer outcome. We assessed the impact of body mass index (BMI) on pathological complete response (pCR), disease-free (DFS), and overall survival (OS), according to BC subtypes in patients with primary BC treated with neoadjuvant chemotherapy. 8,872 patients with primary BC from eight neoadjuvant trials were categorized according to BMI: underweight (<18.5 kg/m2), normal weight (18.5 to <25 kg/m2), overweight (25 to <30 kg/m2), obese (30 to <40 kg/m2), and very obese (≥40 kg/m2). BC subtypes were defined as luminal-like (ER/PgR-positive and HER2-negative), HER2/luminal (ER/PgR-positive and HER2-positive), HER2-like (ER/PgR-negative and HER2-positive), and triple-negative (TNBC; ER/PgR- and HER2-negative). pCR rate was higher in normal weight patients compared with all other BMI groups (P = 0.003). Mean DFS and OS were shorter in obese (87.3 months, P = 0.014 and 94.9 months, P = 0.001, respectively) and very obese (66.6 months, P < 0.001 and 75.3 months, P < 0.001, respectively) compared with normal weight patients (91.5 and 98.8 months, respectively) which was confirmed by subpopulation treatment effect pattern plot analyses and was consistent in luminal-like and TNBC. No interaction was observed between BMI and pCR. Normal weight patients experienced less non-hematological adverse events (P = 0.002) and were more likely to receive full taxane doses (P < 0.001) compared with all other BMI groups. In multivariable analysis, the dose of taxanes was predictive for pCR (P < 0.001). Higher BMI was associated with lower pCR and a detrimental impact on survival. Normal weight patients had the best compliance to chemotherapy and received the highest taxane doses, which seems to be related with treatment outcomes.


Breast cancer Body mass index Neoadjuvant treatment Breast cancer subtypes 


Conflict of interest

Jens-Uwe Blohmer: Consultant/Advisory role by ROCHE. Claus Hanusch: Consultant/Advisory role by NOVARTIS, AMGEN. All other authors have declared no conflicts of interest.


  1. 1.
    Flegal KM, Carroll MD, Kit BK, Ogden CL (2012) Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999–2010. JAMA 307:491–497CrossRefPubMedGoogle Scholar
  2. 2.
    Mokdad AH, Ford ES, Bowman BA et al (2003) Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001. JAMA 289:76–79CrossRefPubMedGoogle Scholar
  3. 3.
    Hossain P, Kawar B, El Nahas M (2007) Obesity and diabetes in the developing world–a growing challenge. N Engl J Med 356:213–215CrossRefPubMedGoogle Scholar
  4. 4.
    Flegal KM, Kit BK, Orpana H, Graubard BI (2013) Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis. JAMA 309:71–82CrossRefPubMedGoogle Scholar
  5. 5.
    Pfeiffer RM, Park Y, Kreimer AR et al (2013) Risk prediction for breast, endometrial, and ovarian cancer in white women aged 50 y or older: derivation and validation from population-based cohort studies. PLoS Med 10:e1001492CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Harvey AE, Lashinger LM, Hursting SD (2011) The growing challenge of obesity and cancer: an inflammatory issue. Ann NY Acad Sci 1229:45–52CrossRefPubMedGoogle Scholar
  7. 7.
    Hursting SD, Dunlap SM (2012) Obesity, metabolic dysregulation, and cancer: a growing concern and an inflammatory (and microenvironmental) issue. Ann NY Acad Sci 1271:82–87CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Shoelson SE, Lee J, Goldfine AB (2006) Inflammation and insulin resistance. J Clin Invest 116:1793–1801CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Gnant M, Pfeiler G, Stöger H et al (2013) The predictive impact of body mass index on the efficacy of extended adjuvant endocrine treatment with anastrozole in postmenopausal patients with breast cancer: an analysis of the randomised ABCSG-6a trial. Br J Cancer 109:589–596CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Litton JK, Gonzalez-Angulo AM, Warneke CL et al (2008) Relationship between obesity and pathologic response to neoadjuvant chemotherapy among women with operable breast cancer. J Clin Oncol 26:4072–4077CrossRefPubMedGoogle Scholar
  11. 11.
    Del Fabbro E, Parsons H, Warneke CL et al (2012) The relationship between body composition and response to neoadjuvant chemotherapy in women with operable breast cancer. Oncologist 17:1240–1245CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Chen S, Chen CM, Zhou Y et al (2012) Obesity or overweight is associated with worse pathological response to neoadjuvant chemotherapy among Chinese women with breast cancer. PLoS ONE 7:e41380CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Berclaz G, Li S, Price KN et al (2004) Body mass index as a prognostic feature in operable breast cancer: the International Breast Cancer Study Group experience. Ann Oncol 15:875–884CrossRefPubMedGoogle Scholar
  14. 14.
    Pajares B, Pollán M, Martín M et al (2013) Obesity and survival in operable breast cancer patients treated with adjuvant anthracyclines and taxanes according to pathological subtypes: a pooled analysis. Breast Cancer Res 15:R105CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Tait S, Pacheco JM, Gao F et al (2014) Body mass index, diabetes, and triple-negative breast cancer prognosis. Breast Cancer Res Treat 146:189–197CrossRefPubMedGoogle Scholar
  16. 16.
    Chan DS, Vieira AR, Aune D et al (2014) Body mass index and survival in women with breast cancer–systematic literature review and meta-analysis of 82 follow-up studies. Ann Oncol 25:1901–1914CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Griggs JJ, Mangu PB, Anderson H et al (2012) Appropriate chemotherapy dosing for obese adult patients with cancer: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol 30:1553–1561CrossRefPubMedGoogle Scholar
  18. 18.
    Peairs KS, Barone BB, Snyder CF et al (2011) Diabetes mellitus and breast cancer outcomes: a systematic review and meta-analysis. J Clin Oncol 29:40–46CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Jiralerspong S, Palla SL, Giordano SH et al (2009) Metformin and pathologic complete responses to neoadjuvant chemotherapy in diabetic patients with breast cancer. J Clin Oncol 27:3297–3302CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Jiralerspong S, Kim ES, Dong W et al (2013) Obesity, diabetes, and survival outcomes in a large cohort of early-stage breast cancer patients. Ann Oncol 24:2506–2514CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    von Minckwitz G, Fontanella C (2013) Selecting the neoadjuvant treatment by molecular subtype: how to maximize the benefit? Breast 22(Suppl 2):S149–S151CrossRefGoogle Scholar
  22. 22.
    von Minckwitz G, Untch M, Blohmer JU et al (2012) Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J Clin Oncol 30:1796–1804CrossRefGoogle Scholar
  23. 23.
    von Minckwitz G, Blohmer JU, Costa SD et al (2013) Response-guided neoadjuvant chemotherapy for breast cancer. J Clin Oncol 31:3623–3630CrossRefGoogle Scholar
  24. 24.
    von Minckwitz G, Raab G, Caputo A et al (2005) Doxorubicin with cyclophosphamide followed by docetaxel every 21 days compared with doxorubicin and docetaxel every 14 days as preoperative treatment in operable breast cancer: the GEPARDUO study of the German Breast Group. J Clin Oncol 23:2676–2685CrossRefGoogle Scholar
  25. 25.
    von Minckwitz G, Blohmer JU, Raab G et al (2005) In vivo chemosensitivity-adapted preoperative chemotherapy in patients with early-stage breast cancer: the GEPARTRIO pilot study. Ann Oncol 16:56–63CrossRefGoogle Scholar
  26. 26.
    von Minckwitz G, Kümmel S, Vogel P et al (2008) Intensified neoadjuvant chemotherapy in early-responding breast cancer: phase III randomized GeparTrio study. J Natl Cancer Inst 100:552–562CrossRefGoogle Scholar
  27. 27.
    von Minckwitz G, Kümmel S, Vogel P et al (2008) Neoadjuvant vinorelbine-capecitabine versus docetaxel-doxorubicin-cyclophosphamide in early nonresponsive breast cancer: phase III randomized GeparTrio trial. J Natl Cancer Inst 100:542–551CrossRefGoogle Scholar
  28. 28.
    Untch M, Rezai M, Loibl S et al (2010) Neoadjuvant treatment with trastuzumab in HER2-positive breast cancer: results from the GeparQuattro study. J Clin Oncol 28:2024–2031CrossRefPubMedGoogle Scholar
  29. 29.
    von Minckwitz G, Darb-Esfahani S, Loibl S et al (2012) Responsiveness of adjacent ductal carcinoma in situ and changes in HER2 status after neoadjuvant chemotherapy/trastuzumab treatment in early breast cancer–results from the GeparQuattro study (GBG 40). Breast Cancer Res Treat 132:863–870CrossRefGoogle Scholar
  30. 30.
    von Minckwitz G, Eidtmann H, Loibl S et al (2011) Integrating bevacizumab, everolimus, and lapatinib into current neoadjuvant chemotherapy regimen for primary breast cancer. Safety results of the GeparQuinto trial. Ann Oncol 22:301–306CrossRefGoogle Scholar
  31. 31.
    Untch M, Loibl S, Bischoff J et al (2012) Lapatinib versus trastuzumab in combination with neoadjuvant anthracycline-taxane-based chemotherapy (GeparQuinto, GBG 44): a randomised phase 3 trial. Lancet Oncol 13:135–144CrossRefPubMedGoogle Scholar
  32. 32.
    von Minckwitz G, Eidtmann H, Rezai M et al (2012) Neoadjuvant chemotherapy and bevacizumab for HER2-negative breast cancer. N Engl J Med 366:299–309CrossRefGoogle Scholar
  33. 33.
    Huober J, Fasching PA, Hanusch C et al (2013) Neoadjuvant chemotherapy with paclitaxel and everolimus in breast cancer patients with non-responsive tumours to epirubicin/cyclophosphamide (EC) ± bevacizumab—results of the randomised GeparQuinto study (GBG 44). Eur J Cancer 49:2284–2293CrossRefPubMedGoogle Scholar
  34. 34.
    Untch M, Möbus V, Kuhn W et al (2009) Intensive dose-dense compared with conventionally scheduled preoperative chemotherapy for high-risk primary breast cancer. J Clin Oncol 27:2938–2945CrossRefPubMedGoogle Scholar
  35. 35.
    Untch M, Fasching PA, Konecny GE et al (2011) PREPARE trial: a randomized phase III trial comparing preoperative, dose-dense, dose-intensified chemotherapy with epirubicin, paclitaxel and CMF versus a standard-dosed epirubicin/cyclophosphamide followed by paclitaxel ± darbepoetin alfa in primary breast cancer–results at the time of surgery. Ann Oncol 22:1988–1998CrossRefPubMedGoogle Scholar
  36. 36.
    Untch M, Fasching PA, Konecny GE et al (2011) Pathologic complete response after neoadjuvant chemotherapy plus trastuzumab predicts favorable survival in human epidermal growth factor receptor 2-overexpressing breast cancer: results from the TECHNO trial of the AGO and GBG study groups. J Clin Oncol 29:3351–3357CrossRefPubMedGoogle Scholar
  37. 37.
    Goldhirsch A, Wood WC, Gelber RD et al (2007) 10th St. Gallen conference. Progress and promise: highlights of the international expert consensus on the primary therapy of early breast cancer 2007. Ann Oncol 18:1133–1144CrossRefPubMedGoogle Scholar
  38. 38.
    World Health Organization (2014) BMI classification. Accessed 17 December 2014
  39. 39.
    Mosteller RD (1987) Simplified calculation of body-surface area. N Engl J Med 317:1098PubMedGoogle Scholar
  40. 40.
    Hudis CA, Barlow WE, Costantino JP et al (2007) Proposal for standardized definitions for efficacy end points in adjuvant breast cancer trials: the STEEP system. J Clin Oncol 25:2127–2132CrossRefPubMedGoogle Scholar
  41. 41.
    Goldhirsch A, Glick JH, Gelber RD, Senn HJ (1998) International Consensus Panel on the treatment of primary breast cancer. V: update 1998. Recent results. Cancer Res 152:481–497Google Scholar
  42. 42.
    Bonetti M, Gelber RD (2000) A graphical method to assess treatment-covariate interactions using the Cox model on subsets of the data. Stat Med 19:2595–2609CrossRefPubMedGoogle Scholar
  43. 43.
    Houssami N, Macaskill P, von Minckwitz G et al (2012) Meta-analysis of the association of breast cancer subtype and pathologic complete response to neoadjuvant chemotherapy. Eur J Cancer 48:3342–3354CrossRefPubMedGoogle Scholar
  44. 44.
    Dent S, Oyan B, Honig A et al (2013) HER2-targeted therapy in breast cancer: a systematic review of neoadjuvant trials. Cancer Treat Rev 39:622–631CrossRefPubMedGoogle Scholar
  45. 45.
    von Minckwitz G, Loibl S, Untch M (2012) What is the current standard of care for anti-HER2 neoadjuvant therapy in breast cancer? Oncology (Williston Park) 26:20–26Google Scholar
  46. 46.
    Sparano JA, Wang M, Zhao F et al (2012) Obesity at diagnosis is associated with inferior outcomes in hormone receptor-positive operable breast cancer. Cancer 118:5937–5946CrossRefPubMedCentralPubMedGoogle Scholar
  47. 47.
    Sestak I, Distler W, Forbes JF et al (2010) Effect of body mass index on recurrences in tamoxifen and anastrozole treated women: an exploratory analysis from the ATAC trial. J Clin Oncol 28:3411–3415CrossRefPubMedGoogle Scholar
  48. 48.
    Pan H, Gray RG (on behalf of the Early Breast Cancer Trialists’ Collaborative Group) (2014) Effect of obesity in premenopausal ER+ early breast cancer: EBCTCG data on 80,000 patients in 70 trials. J Clin Oncol 32:5 (suppl; abstr 503)Google Scholar
  49. 49.
    Pfeiler G, Königsberg R, Fesl C et al (2011) Impact of body mass index on the efficacy of endocrine therapy in premenopausal patients with breast cancer: an analysis of the prospective ABCSG-12 trial. J Clin Oncol 29:2653–2659CrossRefPubMedGoogle Scholar
  50. 50.
    Simpson ER, Brown KA (2013) Minireview: obesity and breast cancer: a tale of inflammation and dysregulated metabolism. Mol Endocrinol 27:715–725CrossRefPubMedGoogle Scholar
  51. 51.
    Pfeiler G, Königsberg R, Hadji P et al (2013) Impact of body mass index on estradiol depletion by aromatase inhibitors in postmenopausal women with early breast cancer. Br J Cancer 109:1522–1527CrossRefPubMedCentralPubMedGoogle Scholar
  52. 52.
    Becker MA, Ibrahim YH, Cui X et al (2011) The IGF pathway regulates ERα through a S6K1-dependent mechanism in breast cancer cells. Mol Endocrinol 25:516–528CrossRefPubMedCentralPubMedGoogle Scholar
  53. 53.
    Tinoco G, Warsch S, Glück S et al (2013) Treating breast cancer in the 21st century: emerging biological therapies. J Cancer 4:117–132CrossRefPubMedCentralPubMedGoogle Scholar
  54. 54.
    Goodwin PJ, Ennis M, Pritchard KI et al (2002) Fasting insulin and outcome in early-stage breast cancer: results of a prospective cohort study. J Clin Oncol 20:42–51CrossRefPubMedGoogle Scholar
  55. 55.
    Goodwin PJ, Ennis M, Bahl M et al (2009) High insulin levels in newly diagnosed breast cancer patients reflect underlying insulin resistance and are associated with components of the insulin resistance syndrome. Breast Cancer Res Treat 114:517–525CrossRefPubMedGoogle Scholar
  56. 56.
    Goodwin PJ, Ennis M, Pritchard KI et al (2012) Insulin- and obesity-related variables in early-stage breast cancer: correlations and time course of prognostic associations. J Clin Oncol 30:164–171CrossRefPubMedGoogle Scholar
  57. 57.
    Irwin ML, Duggan C, Wang CY et al (2011) Fasting C-peptide levels and death resulting from all causes and breast cancer: the health, eating, activity, and lifestyle study. J Clin Oncol 29:47–53CrossRefPubMedCentralPubMedGoogle Scholar
  58. 58.
    Griggs JJ, Culakova E, Sorbero ME et al (2007) Effect of patient socioeconomic status and body mass index on the quality of breast cancer adjuvant chemotherapy. J Clin Oncol 25:277–284CrossRefPubMedGoogle Scholar
  59. 59.
    Griggs JJ, Sorbero ME, Lyman GH (2005) Undertreatment of obese women receiving breast cancer chemotherapy. Arch Intern Med 165:1267–1273CrossRefPubMedGoogle Scholar
  60. 60.
    Ladoire S, Dalban C, Roché H et al (2014) Effect of obesity on disease-free and overall survival in node-positive breast cancer patients in a large French population: a pooled analysis of two randomised trials. Eur J Cancer 50:506–516CrossRefPubMedGoogle Scholar
  61. 61.
    Qin YY, Li H, Guo XJ et al (2011) Adjuvant chemotherapy, with or without taxanes, in early or operable breast cancer: a meta-analysis of 19 randomized trials with 30698 patients. PLoS ONE 6:e26946CrossRefPubMedCentralPubMedGoogle Scholar
  62. 62.
    Cuppone F, Bria E, Carlini P et al (2008) Taxanes as primary chemotherapy for early breast cancer: meta-analysis of randomized trials. Cancer 113:238–246CrossRefPubMedGoogle Scholar
  63. 63.
    Kramer CK, Zinman B, Retnakaran R (2013) Are metabolically healthy overweight and obesity benign conditions? A systematic review and meta-analysis. Ann Intern Med 159:758–769CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Caterina Fontanella
    • 1
    • 2
  • Bianca Lederer
    • 1
  • Stephan Gade
    • 1
  • Mieke Vanoppen
    • 3
  • Jens Uwe Blohmer
    • 4
  • Serban Dan Costa
    • 5
  • Carsten Denkert
    • 6
  • Holger Eidtmann
    • 7
  • Bernd Gerber
    • 8
  • Claus Hanusch
    • 9
  • Jörn Hilfrich
    • 10
  • Jens Huober
    • 11
  • Andreas Schneeweiss
    • 12
  • Stefan Paepke
    • 13
  • Christian Jackisch
    • 14
  • Keyur Mehta
    • 1
  • Valentina Nekljudova
    • 1
  • Michael Untch
    • 15
  • Patrick Neven
    • 3
  • Gunter von Minckwitz
    • 1
  • Sibylle Loibl
    • 1
  1. 1.German Breast GroupNeu-IsenburgGermany
  2. 2.Department of Medical OncologyUniversity Hospital of UdineUdineItaly
  3. 3.Department of OncologyCatholic University of LeuvenLeuvenBelgium
  4. 4.Department of Gynaecology and ObstetricsSt. Gertrauden-HospitalBerlinGermany
  5. 5.Department of Gynaecology and ObstetricsUniversity HospitalMagdeburgGermany
  6. 6.Institute of PathologyCharité HospitalBerlinGermany
  7. 7.Department of Gynaecology and ObstetricsUniversity HospitalKielGermany
  8. 8.Department of Gynaecology and ObstetricsUniversity HospitalRostockGermany
  9. 9.Department of Gynaecology and ObstetricsRot-Kreuz-KlinikumMunichGermany
  10. 10.Department of Gynaecology and ObstetricsEilenriede KlinikHannoverGermany
  11. 11.Department of Gynaecology and ObstetricsUniversity HospitalUlmGermany
  12. 12.National Center for Tumor DiseasesUniversity HospitalHeidelbergGermany
  13. 13.Department of Gynaecology and ObstetricsUniversity Hospital rechts der IsarMunichGermany
  14. 14.Department of Gynaecology and ObstetricsSana-KlinikumOffenbachGermany
  15. 15.Department of Gynaecology and ObstetricsHELIOS Klinikum Berlin-BuchBerlinGermany

Personalised recommendations