Breast Cancer Research and Treatment

, Volume 147, Issue 1, pp 39–49 | Cite as

MicroRNA-9 is associated with epithelial-mesenchymal transition, breast cancer stem cell phenotype, and tumor progression in breast cancer

  • Jae Moon Gwak
  • Hyun Jeong Kim
  • Eun Joo Kim
  • Yul Ri Chung
  • Sumi Yun
  • An Na Seo
  • Hee Jin Lee
  • So Yeon Park
Preclinical study


MicroRNAs (miRNAs) are involved in the progression of breast cancer. Some miRNAs, especially the miR-200 family, miR-9, and miR-155 have been reported to be associated with epithelial-mesenchymal transition (EMT) and breast cancer stem cell (BCSC) phenotypes. This study was designed to evaluate the expression levels of these miRNAs in human breast cancer samples and analyzed their relationship with clinicopathologic features of the tumor including breast cancer subtype, EMT, BCSC phenotype, and prognosis. Expression levels of the miR-200 family, miR-9, and miR-155 were quantified using qRT-PCR. Breast cancer subtype, BCSC phenotype (CD44+/CD24− and ALDH1+), and expression of EMT markers (vimentin expression and E-cadherin loss) were evaluated by immunohistochemistry. miR-9 was more highly expressed in HER2+ and triple-negative subtypes than in luminal subtypes. Its expression level was significantly higher in tumors with high T stage, high histologic grade, p53 overexpression, and high proliferation index. Expression of miR-9 was also higher in tumors showing the CD44+/CD24− phenotype, vimentin expression, and E-cadherin loss. Furthermore, high level of miR-9 expression was found to be an independent prognostic factor for poor disease-free survival of the patients. Expression of miR-200a and miR-141 was highest in luminal A subtype, and miR-155 expression was highest in triple-negative subtype. Although the expression levels of some miR-200 family members and miR-155 showed difference with regard to EMT or BCSC phenotype, they were not associated with patients’ prognosis. In conclusion, overexpression of miR-9 is found in tumors with aggressive phenotypes and is associated with poor prognosis in breast cancer, suggesting that it may serve as a potential biomarker for breast cancer progression and a target for treatment.


Breast cancer miR-9 Epithelial-mesenchymal transition Breast cancer stem cell Progression 



This study was supported by a Grant from Seoul National University Bundang Hospital and SK telecom, Republic of Korea (06-2013-095) to Park SY.

Conflict of interest

All authors declare no conflict of interests.

Supplementary material

10549_2014_3069_MOESM1_ESM.doc (160 kb)
Supplementary material 1 (DOC 160 kb)
10549_2014_3069_MOESM2_ESM.doc (37 kb)
Supplementary material 2 (DOC 37 kb)
10549_2014_3069_MOESM3_ESM.doc (86 kb)
Supplementary material 3 (DOC 85 kb)


  1. 1.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297CrossRefPubMedGoogle Scholar
  2. 2.
    Esquela-Kerscher A, Slack FJ (2006) Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 6(4):259–269. doi: 10.1038/nrc1840 CrossRefPubMedGoogle Scholar
  3. 3.
    Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433(7027):769–773. doi: 10.1038/nature03315 CrossRefPubMedGoogle Scholar
  4. 4.
    Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6(11):857–866. doi: 10.1038/nrc1997 CrossRefPubMedGoogle Scholar
  5. 5.
    Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Menard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65(16):7065–7070. doi: 10.1158/0008-5472.CAN-05-1783 CrossRefPubMedGoogle Scholar
  6. 6.
    Harquail J, Benzina S, Robichaud GA (2012) MicroRNAs and breast cancer malignancy: an overview of miRNA-regulated cancer processes leading to metastasis. Cancer Biomark 11(6):269–280. doi: 10.3233/CBM-120291 PubMedGoogle Scholar
  7. 7.
    Ma L, Teruya-Feldstein J, Weinberg RA (2007) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449(7163):682–688. doi: 10.1038/nature06174 CrossRefPubMedGoogle Scholar
  8. 8.
    Huang Q, Gumireddy K, Schrier M, le Sage C, Nagel R, Nair S, Egan DA, Li A, Huang G, Klein-Szanto AJ, Gimotty PA, Katsaros D, Coukos G, Zhang L, Pure E, Agami R (2008) The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol 10(2):202–210. doi: 10.1038/ncb1681 CrossRefPubMedGoogle Scholar
  9. 9.
    Cai J, Guan H, Fang L, Yang Y, Zhu X, Yuan J, Wu J, Li M (2013) MicroRNA-374a activates Wnt/beta-catenin signaling to promote breast cancer metastasis. J Clin Invest 123(2):566–579. doi: 10.1172/JCI65871 PubMedCentralPubMedGoogle Scholar
  10. 10.
    Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szasz AM, Wang ZC, Brock JE, Richardson AL, Weinberg RA (2009) A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell 137(6):1032–1046. doi: 10.1016/j.cell.2009.03.047 CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Tavazoie SF, Alarcon C, Oskarsson T, Padua D, Wang Q, Bos PD, Gerald WL, Massague J (2008) Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451(7175):147–152. doi: 10.1038/nature06487 CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Micalizzi DS, Farabaugh SM, Ford HL (2010) Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia 15(2):117–134. doi: 10.1007/s10911-010-9178-9 CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139(5):871–890. doi: 10.1016/j.cell.2009.11.007 CrossRefPubMedGoogle Scholar
  14. 14.
    Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119(6):1420–1428. doi: 10.1172/JCI39104 CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133(4):704–715. doi: 10.1016/j.cell.2008.03.027 CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Sarrio D, Rodriguez-Pinilla SM, Hardisson D, Cano A, Moreno-Bueno G, Palacios J (2008) Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res 68(4):989–997. doi: 10.1158/0008-5472.CAN-07-2017 CrossRefPubMedGoogle Scholar
  17. 17.
    Wright JA, Richer JK, Goodall GJ (2010) MicroRNAs and EMT in mammary cells and breast cancer. J Mammary Gland Biol Neoplasia 15(2):213–223. doi: 10.1007/s10911-010-9183-z CrossRefPubMedGoogle Scholar
  18. 18.
    Hurteau GJ, Carlson JA, Spivack SD, Brock GJ (2007) Overexpression of the microRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin. Cancer Res 67(17):7972–7976. doi: 10.1158/0008-5472.CAN-07-1058 CrossRefPubMedGoogle Scholar
  19. 19.
    Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10(5):593–601. doi: 10.1038/ncb1722 CrossRefPubMedGoogle Scholar
  20. 20.
    Park SM, Gaur AB, Lengyel E, Peter ME (2008) The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 22(7):894–907. doi: 10.1101/gad.1640608 CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P, Qian D, Diehn M, Liu H, Panula SP, Chiao E, Dirbas FM, Somlo G, Pera RA, Lao K, Clarke MF (2009) Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 138(3):592–603. doi: 10.1016/j.cell.2009.07.011 CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Ma L, Young J, Prabhala H, Pan E, Mestdagh P, Muth D, Teruya-Feldstein J, Reinhardt F, Onder TT, Valastyan S, Westermann F, Speleman F, Vandesompele J, Weinberg RA (2010) miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol 12(3):247–256. doi: 10.1038/ncb2024 PubMedCentralPubMedGoogle Scholar
  23. 23.
    Kong W, Yang H, He L, Zhao JJ, Coppola D, Dalton WS, Cheng JQ (2008) MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol Cell Biol 28(22):6773–6784. doi: 10.1128/MCB.00941-08 CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Castilla MA, Diaz-Martin J, Sarrio D, Romero-Perez L, Lopez-Garcia MA, Vieites B, Biscuola M, Ramiro-Fuentes S, Isacke CM, Palacios J (2012) MicroRNA-200 family modulation in distinct breast cancer phenotypes. PLoS ONE 7(10):e47709. doi: 10.1371/journal.pone.0047709 CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Park SY, Kwon HJ, Choi Y, Lee HE, Kim SW, Kim JH, Kim IA, Jung N, Cho NY, Kang GH (2012) Distinct patterns of promoter CpG island methylation of breast cancer subtypes are associated with stem cell phenotypes. Mod Pathol 25(2):185–196. doi: 10.1038/modpathol.2011.160 PubMedGoogle Scholar
  26. 26.
    Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thurlimann B, Panel m (2011) Strategies for subtypes—dealing with the diversity of breast cancer: highlights of the St. gallen international expert consensus on the primary therapy of early breast cancer 2011. Ann Oncol 8:1736–1747. doi: 10.1093/annonc/mdr304 CrossRefGoogle Scholar
  27. 27.
    Zhou X, Marian C, Makambi KH, Kosti O, Kallakury BV, Loffredo CA, Zheng YL (2012) MicroRNA-9 as potential biomarker for breast cancer local recurrence and tumor estrogen receptor status. PLoS ONE 7(6):e39011. doi: 10.1371/journal.pone.0039011 CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Gravgaard KH, Lyng MB, Laenkholm AV, Sokilde R, Nielsen BS, Litman T, Ditzel HJ (2012) The miRNA-200 family and miRNA-9 exhibit differential expression in primary versus corresponding metastatic tissue in breast cancer. Breast Cancer Res Treat 134(1):207–217. doi: 10.1007/s10549-012-1969-9 CrossRefPubMedGoogle Scholar
  29. 29.
    Chen D, Sun Y, Wei Y, Zhang P, Rezaeian AH, Teruya-Feldstein J, Gupta S, Liang H, Lin HK, Hung MC, Ma L (2012) LIFR is a breast cancer metastasis suppressor upstream of the Hippo-YAP pathway and a prognostic marker. Nat Med 18(10):1511–1517. doi: 10.1038/nm.2940 CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Park SY, Lee HE, Li H, Shipitsin M, Gelman R, Polyak K (2010) Heterogeneity for stem cell-related markers according to tumor subtype and histologic stage in breast cancer. Clin Cancer Res 16(3):876–887. doi: 10.1158/1078-0432.CCR-09-1532 CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Manavalan TT, Teng Y, Litchfield LM, Muluhngwi P, Al-Rayyan N, Klinge CM (2013) Reduced expression of miR-200 family members contributes to antiestrogen resistance in LY2 human breast cancer cells. PLoS ONE 8(4):e62334. doi: 10.1371/journal.pone.0062334 CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103(7):2257–2261. doi: 10.1073/pnas.0510565103 CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Chen J, Wang BC, Tang JH (2012) Clinical significance of microRNA-155 expression in human breast cancer. J Surg Oncol 106(3):260–266. doi: 10.1002/jso.22153 CrossRefPubMedGoogle Scholar
  34. 34.
    Mattiske S, Suetani RJ, Neilsen PM, Callen DF (2012) The oncogenic role of miR-155 in breast cancer. Cancer Epidemiol Biomarkers Prev 21(8):1236–1243. doi: 10.1158/1055-9965.EPI-12-0173 CrossRefPubMedGoogle Scholar
  35. 35.
    Chang S, Wang RH, Akagi K, Kim KA, Martin BK, Cavallone L, Haines DC, Basik M, Mai P, Poggi E, Isaacs C, Looi LM, Mun KS, Greene MH, Byers SW, Teo SH, Deng CX, Sharan SK, Kathleen Cuningham Foundation Consortium for Research into Familial Breast C (2011) Tumor suppressor BRCA1 epigenetically controls oncogenic microRNA-155. Nat Med 17(10):1275–1282. doi: 10.1038/nm.2459 CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jae Moon Gwak
    • 1
  • Hyun Jeong Kim
    • 2
  • Eun Joo Kim
    • 2
  • Yul Ri Chung
    • 1
  • Sumi Yun
    • 1
  • An Na Seo
    • 2
  • Hee Jin Lee
    • 3
  • So Yeon Park
    • 1
    • 2
  1. 1.Department of PathologySeoul National University College of MedicineSeoulRepublic of Korea
  2. 2.Department of PathologySeoul National University Bundang HospitalSeongnam-SiRepublic of Korea
  3. 3.Department of Pathology, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulRepublic of Korea

Personalised recommendations