Breast Cancer Research and Treatment

, Volume 147, Issue 2, pp 423–431 | Cite as

Exosomal miR-221/222 enhances tamoxifen resistance in recipient ER-positive breast cancer cells

  • Yifang Wei
  • Xiaofeng Lai
  • Shentong Yu
  • Suning Chen
  • Yongzheng Ma
  • Yuan Zhang
  • Huichen Li
  • Xingmei Zhu
  • Libo YaoEmail author
  • Jian ZhangEmail author
Brief Report


Recent studies have demonstrated that specific miRNAs, such as miR-221/222, may be responsible for tamoxifen resistance in breast cancer. Secreted miRNAs enclosed in exosomes can act as intercellular bio-messengers. Our objective is to investigate the role of secreted miR-221/222 in tamoxifen resistance of ER-positive breast cancer cells. Transmission electron microscopy analysis and nanoparticle tracking analysis were performed to determine the exosomes difference between MCF-7TamR (tamoxifen resistant) and MCF-7wt (tamoxifen sensitive) cells. PKH67 fluorescent labeling assay was used to detect exosomes derived from MCF-7TamR cells entering into MCF-7wt cells. The potential function of exosomes on tamoxifen resistance transmission was analyzed with cell viability, apoptosis ,and colony formation. MiRNA microarrays and qPCR were used to detect and compare the miRNAs expression levels in the two cells and exosomes. As the targets of miR-221/222, p27 and ERα were analyzed with western blot and qPCR. Compared with the MCF-7wt exosomes, there were significant differences in the concentration and size distribution of MCF-7TamR exosomes. MCF-7wt cells had an increased amount of exosomal RNA and proteins compared with MCF-7TamR cells. MCF-7TamR exosomes could enter into MCF-7wt cells, and then released miR-221/222. And the elevated miR-221/222 effectively reduced the target genes expression of P27 and ERα, which enhanced tamoxifen resistance in recipient cells. Our results are the first to show that secreted miR-221/222 serves as signaling molecules to mediate communication of tamoxifen resistance.


Exosomal miR-221/222 Tamoxifen resistance Estrogen receptor Breast cancer 



Tamoxifen-resistant MCF-7


Tamoxifen-sensitive MCF-7


Tumor-associated macrophage


Estrogen receptor α



We thank Shuai Zhang for his excellent technical support of nanoparticle tracking analysis. This study was supported by National Natural Science Foundation of China (Nos. 81202091, 81372390 and 81102006).

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10549_2014_3037_MOESM1_ESM.tif (2 mb)
Fig. S1 Quantification of mean diameters of the exosomes isolated from MCF-7wt and MCF-7TamR cells. Diameters of exosomes were manually measured in each of five random microscopic fields (TIFF 2071 kb)
10549_2014_3037_MOESM2_ESM.tif (422 kb)
Fig. S2 Quantification of particles were analyzed by nanoparticle tracking analysis (NTA) (TIFF 422 kb)
10549_2014_3037_MOESM3_ESM.tif (313 kb)
Fig. S3 T47DTamR exosomes deliver miR-221/222 into recipient T47Dwt cells (a) Relative expression of miR-221/222 between T47Dwt and T47DTamR exosomes. (b) Relative expression of miR-221/222 in T47Dwt cells treated with T47Dwt or T47DTamR exosomes respectively (TIFF 313 kb)


  1. 1.
    Shibuya K, Mathers CD, Boschi-Pinto C, Lopez AD, Murray CJ (2002) Global and regional estimates of cancer mortality and incidence by site: II. Results for the global burden of disease 2000. BMC Cancer 2:37PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Katzenellenbogen BS, Miller MA, Mullick A, Sheen YY (1985) Antiestrogen action in breast cancer cells: modulation of proliferation and protein synthesis, and interaction with estrogen receptors and additional antiestrogen binding sites. Breast Cancer Res Treat 5(3):231–243PubMedCrossRefGoogle Scholar
  3. 3.
    Osborne CK, Schiff R (2003) Growth factor receptor cross-talk with estrogen receptor as a mechanism for tamoxifen resistance in breast cancer. Breast 12(6):362–367PubMedCrossRefGoogle Scholar
  4. 4.
    Yun J, Pannuti A, Espinoza I, Zhu H, Hicks C, Zhu X, Caskey M, Rizzo P, D’Souza G, Backus K et al (2013) Crosstalk between PKCalpha and Notch-4 in endocrine-resistant breast cancer cells. Oncogenesis 2:e60PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Osborne CK, Fuqua SA (1994) Mechanisms of tamoxifen resistance. Breast Cancer Res Treat 32(1):49–55PubMedCrossRefGoogle Scholar
  6. 6.
    Miller TE, Ghoshal K, Ramaswamy B, Roy S, Datta J, Shapiro CL, Jacob S, Majumder S (2008) MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. J Biol Chem 283(44):29897–29903PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Maillot G, Lacroix-Triki M, Pierredon S, Gratadou L, Schmidt S, Benes V, Roche H, Dalenc F, Auboeuf D, Millevoi S et al (2009) Widespread estrogen-dependent repression of micrornas involved in breast tumor cell growth. Cancer Res 69(21):8332–8340PubMedCrossRefGoogle Scholar
  8. 8.
    Cittelly DM, Das PM, Spoelstra NS, Edgerton SM, Richer JK, Thor AD, Jones FE (2010) Downregulation of miR-342 is associated with tamoxifen resistant breast tumors. Mol Cancer 9:317PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Majumder S, Jacob ST (2011) Emerging role of microRNAs in drug-resistant breast cancer. Gene Exp 15(3):141–151CrossRefGoogle Scholar
  10. 10.
    Manavalan TT, Teng Y, Litchfield LM, Muluhngwi P, Al-Rayyan N, Klinge CM (2013) Reduced expression of miR-200 family members contributes to antiestrogen resistance in LY2 human breast cancer cells. PLoS One 8(4):e62334PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Ward A, Balwierz A, Zhang JD, Kublbeck M, Pawitan Y, Hielscher T, Wiemann S, Sahin O (2013) Re-expression of microRNA-375 reverses both tamoxifen resistance and accompanying EMT-like properties in breast cancer. Oncogene 32(9):1173–1182PubMedCrossRefGoogle Scholar
  12. 12.
    Lawrie CH, Gal S, Dunlop HM, Pushkaran B, Liggins AP, Pulford K, Banham AH, Pezzella F, Boultwood J, Wainscoat JS et al (2008) Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol 141(5):672–675PubMedCrossRefGoogle Scholar
  13. 13.
    Kosaka N, Izumi H, Sekine K, Ochiya T (2010) microRNA as a new immune-regulatory agent in breast milk. Silence 1(1):7PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Hanke M, Hoefig K, Merz H, Feller AC, Kausch I, Jocham D, Warnecke JM, Sczakiel G (2010) A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol Oncol 28(6):655–661PubMedCrossRefGoogle Scholar
  15. 15.
    Michael A, Bajracharya SD, Yuen PS, Zhou H, Star RA, Illei GG, Alevizos I (2010) Exosomes from human saliva as a source of microRNA biomarkers. Oral Dis 16(1):34–38PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo X et al (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18(10):997–1006PubMedCrossRefGoogle Scholar
  17. 17.
    Gallo A, Tandon M, Alevizos I, Illei GG (2012) The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS One 7(3):e30679PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Stoorvogel W, Kleijmeer MJ, Geuze HJ, Raposo G (2002) The biogenesis and functions of exosomes. Traffic 3(5):321–330PubMedCrossRefGoogle Scholar
  19. 19.
    Xin H, Li Y, Buller B, Katakowski M, Zhang Y, Wang X, Shang X, Zhang ZG, Chopp M (2012) Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells 30(7):1556–1564PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M, Williams C, Garcia-Santos G, Ghajar C et al (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18(6):883–891PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Murray MJ, Bailey S, Raby KL, Saini HK, de Kock L, Burke GA, Foulkes WD, Enright AJ, Coleman N, Tischkowitz M (2014) Serum levels of mature microRNAs in DICER1-mutated pleuropulmonary blastoma. Oncogenesis 3:e87PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    van Balkom BW, de Jong OG, Smits M, Brummelman J, den Ouden K, de Bree PM, van Eijndhoven MA, Pegtel DM, Stoorvogel W, Wurdinger T et al (2013) Endothelial cells require miR-214 to secrete exosomes that suppress senescence and induce angiogenesis in human and mouse endothelial cells. Blood 121(19):3997–4006, S3991–3915Google Scholar
  23. 23.
    Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659PubMedCrossRefGoogle Scholar
  24. 24.
    Chiba M, Kimura M, Asari S (2012) Exosomes secreted from human colorectal cancer cell lines contain mRNAs, microRNAs and natural antisense RNAs, that can transfer into the human hepatoma HepG2 and lung cancer A549 cell lines. Oncol Rep 28(5):1551–1558PubMedCentralPubMedGoogle Scholar
  25. 25.
    Zhang Y, Liu D, Chen X, Li J, Li L, Bian Z, Sun F, Lu J, Yin Y, Cai X et al (2010) Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell 39(1):133–144PubMedCrossRefGoogle Scholar
  26. 26.
    Garofalo M, Quintavalle C, Romano G, Croce CM, Condorelli G (2012) miR221/222 in cancer: their role in tumor progression and response to therapy. Curr Mol Med 12(1):27–33PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Zhao JJ, Lin J, Yang H, Kong W, He L, Ma X, Coppola D, Cheng JQ (2008) MicroRNA-221/222 negatively regulates estrogen receptor alpha and is associated with tamoxifen resistance in breast cancer. J Biol Chem 283(45):31079–31086PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Umezu T, Ohyashiki K, Kuroda M, Ohyashiki JH (2013) Leukemia cell to endothelial cell communication via exosomal miRNAs. Oncogene 32(22):2747–2755PubMedCrossRefGoogle Scholar
  29. 29.
    Xiao C, Calado DP, Galler G, Thai TH, Patterson HC, Wang J, Rajewsky N, Bender TP, Rajewsky K (2007) MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell 131(1):146–159PubMedCrossRefGoogle Scholar
  30. 30.
    Katakowski M, Buller B, Zheng X, Lu Y, Rogers T, Osobamiro O, Shu W, Jiang F, Chopp M (2013) Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth. Cancer Lett 335(1):201–204PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Takeshita N, Hoshino I, Mori M, Akutsu Y, Hanari N, Yoneyama Y, Ikeda N, Isozaki Y, Maruyama T, Akanuma N et al (2013) Serum microRNA expression profile: miR-1246 as a novel diagnostic and prognostic biomarker for oesophageal squamous cell carcinoma. Br J Cancer 108(3):644–652PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Banigan MG, Kao PF, Kozubek JA, Winslow AR, Medina J, Costa J, Schmitt A, Schneider A, Cabral H, Cagsal-Getkin O et al (2013) Differential expression of exosomal microRNAs in prefrontal cortices of schizophrenia and bipolar disorder patients. PLoS One 8(1):e48814PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Hu Z, Chen X, Zhao Y, Tian T, Jin G, Shu Y, Chen Y, Xu L, Zen K, Zhang C et al (2010) Serum microRNA signatures identified in a genome-wide serum microRNA expression profiling predict survival of non-small-cell lung cancer. J Clin Oncol 28(10):1721–1726PubMedCrossRefGoogle Scholar
  34. 34.
    Brase JC, Johannes M, Schlomm T, Falth M, Haese A, Steuber T, Beissbarth T, Kuner R, Sultmann H (2011) Circulating miRNAs are correlated with tumor progression in prostate cancer. Int J Cancer 128(3):608–616PubMedCrossRefGoogle Scholar
  35. 35.
    Bobrie A, Krumeich S, Reyal F, Recchi C, Moita LF, Seabra MC, Ostrowski M, Thery C (2012) Rab27a supports exosome-dependent and -independent mechanisms that modify the tumor microenvironment and can promote tumor progression. Cancer Res 72(19):4920–4930PubMedCrossRefGoogle Scholar
  36. 36.
    Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A, Moita CF, Schauer K, Hume AN, Freitas RP et al (2010) Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol 12(1):19–30; sup 11–13Google Scholar
  37. 37.
    van der Pol E, Coumans FA, Grootemaat AE, Gardiner C, Sargent IL, Harrison P, Sturk A, van Leeuwen TG, Nieuwland R (2014) Particle size distribution of exosomes and microvesicles by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J Thromb Haemost. doi: 10.1111/jth.12602 PubMedGoogle Scholar
  38. 38.
    Ekstrom EJ, Bergenfelz C, von Bulow V, Serifler F, Carlemalm E, Jonsson G, Andersson T, Leandersson K (2014) WNT5A induces release of exosomes containing pro-angiogenic and immunosuppressive factors from malignant melanoma cells. Mol Cancer 13(1):88PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Deng ZB, Poliakov A, Hardy RW, Clements R, Liu C, Liu Y, Wang J, Xiang X, Zhang S, Zhuang X et al (2009) Adipose tissue exosome-like vesicles mediate activation of macrophage-induced insulin resistance. Diabetes 58(11):2498–2505PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Jang JY, Lee JK, Jeon YK, Kim CW (2013) Exosome derived from epigallocatechin gallate treated breast cancer cells suppresses tumor growth by inhibiting tumor-associated macrophage infiltration and M2 polarization. BMC Cancer 13:421PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Lee HD, Koo BH, Kim YH, Jeon OH, Kim DS (2012) Exosome release of ADAM15 and the functional implications of human macrophage-derived ADAM15 exosomes. FASEB J 26(7):3084–3095PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Yifang Wei
    • 1
  • Xiaofeng Lai
    • 1
  • Shentong Yu
    • 2
  • Suning Chen
    • 3
  • Yongzheng Ma
    • 1
  • Yuan Zhang
    • 4
  • Huichen Li
    • 2
  • Xingmei Zhu
    • 5
  • Libo Yao
    • 1
    Email author
  • Jian Zhang
    • 1
    Email author
  1. 1.State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular BiologyThe Fourth Military Medical UniversityXi’anChina
  2. 2.Cadet Brigade of the Fourth Military Medical UniversityThe Fourth Military Medical UniversityXi’anChina
  3. 3.Department of Pharmacy, Xijing HospitalThe Fourth Military Medical UniversityXi’anChina
  4. 4.The State Key Discipline of Cell Biology, Department of Oncology, Xijing HospitalThe Fourth Military Medical UniversityXi’anChina
  5. 5.Department of the Key Laboratory, The First Affiliated HospitalXi’an Medical CollegeXi’anChina

Personalised recommendations