Breast Cancer Research and Treatment

, Volume 146, Issue 2, pp 355–363 | Cite as

Differential impact of body mass index on absolute and percent breast density: implications regarding their use as breast cancer risk biomarkers

  • Susann E. Schetter
  • Terryl J. Hartman
  • Jason Liao
  • John P. Richie
  • Bogdan Prokopczyk
  • Cindy DuBrock
  • Carina Signori
  • Christopher Hamilton
  • Laurence M. Demers
  • Karam El-Bayoumy
  • Andrea ManniEmail author
Clinical trial


Percent breast density (PBD), a commonly used biomarker of breast cancer risk (BCR), is confounded by the influence of non-dense breast tissue on its measurement and factors, such as BMI, which have an impact on non-dense tissue. Consequently, BMI, a potent BCR factor, is, paradoxically, negatively correlated with PBD. We propose that absolute breast density (ABD) is a more accurate biomarker of BCR. We used a volumetric method to compare the correlation between PBD and ABD with baseline demographics and dietary and physical activity variables in a group of 169 postmenopausal women enrolled in a clinical trial prior to any intervention. As expected, a strong negative correlation between PBD and BMI was observed (Rho = −0.5, p < 5e−12). In contrast, we observed a strong, previously not well established, positive correlation of BMI with ABD (Rho = 0.41, p < 2.5e−8), which supports the use of ABD as a more accurate indicator of BCR. Correction of PBD by BMI did not frequently provide the same information as ABD. In addition, because of the strong influence of BMI on ABD, many correlations between dietary variables and ABD did not emerge, until adjustment was made for BMI. ABD corrected by BMI should be the gold standard BD measurement. These findings identify the optimal measurement of BD when testing the influence of an intervention on BD as a biomarker of BCR.


Percent versus absolute breast density Breast density and BMI Dietary variables and breast density Physical activity and breast density 



This work is supported by Grant KG081632 from Susan G. Komen for the Cure.

Conflict of interest

None of the authors have any conflict of interest to disclose.


  1. 1.
    McCormack VA, dos Santos Silva I (2006) Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomark Prev 15(6):1159–1169. doi: 10.1158/1055-9965.EPI-06-0034 CrossRefGoogle Scholar
  2. 2.
    Boyd NF, Guo H, Martin LJ, Sun L, Stone J, Fishell E, Jong RA, Hislop G, Chiarelli A, Minkin S, Yaffe MJ (2007) Mammographic density and the risk and detection of breast cancer. N Engl J Med 356(3):227–236PubMedCrossRefGoogle Scholar
  3. 3.
    Greendale GA, Reboussin BA, Slone S, Wasilauskas C, Pike MC, Ursin G (2003) Postmenopausal hormone therapy and change in mammographic density. J Natl Cancer Inst 95(1):30–37PubMedCrossRefGoogle Scholar
  4. 4.
    Stuedal A, Ma H, Bjorndal H, Ursin G (2009) Postmenopausal hormone therapy with estradiol and norethisterone acetate and mammographic density: findings from a cross-sectional study among Norwegian women. Climacteric 12(3):248–258. doi: 10.1080/13697130802638458 PubMedCrossRefGoogle Scholar
  5. 5.
    Atkinson C, Warren R, Bingham SA, Day NE (1999) Mammographic patterns as a predictive biomarker of breast cancer risk: effect of tamoxifen. Cancer Epidemiol Biomark Prev 8(10):863–866Google Scholar
  6. 6.
    Cuzick J, Warwick J, Pinney E, Warren RM, Duffy SW (2004) Tamoxifen and breast density in women at increased risk of breast cancer. J Natl Cancer Inst 96(8):621–628PubMedCrossRefGoogle Scholar
  7. 7.
    Cuzick J, Warwick J, Pinney E, Duffy SW, Cawthorn S, Howell A, Forbes JF, Warren RM (2011) Tamoxifen-induced reduction in mammographic density and breast cancer risk reduction: a nested case–control study. J Natl Cancer Inst 103(9):744–752. doi: 10.1093/jnci/djr079 PubMedCrossRefGoogle Scholar
  8. 8.
    Kim J, Han W, Moon HG, Ahn SK, Shin HC, You JM, Han SW, Im SA, Kim TY, Koo HR, Chang JM, Cho N, Moon WK, Noh DY (2012) Breast density change as a predictive surrogate for response to adjuvant endocrine therapy in hormone receptor positive breast cancer. Breast Cancer Res 14(4):R102. doi: 10.1186/bcr3221 PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Shepherd JA, Kerlikowske K, Ma L, Duewer F, Fan B, Wang J, Malkov S, Vittinghoff E, Cummings SR (2011) Volume of mammographic density and risk of breast cancer. Cancer Epidemiol Biomark Prev 20(7):1473–1482. doi: 10.1158/1055-9965.EPI-10-1150 CrossRefGoogle Scholar
  10. 10.
    Boyd N, Martin L, Gunasekara A, Melnichouk O, Maudsley G, Peressotti C, Yaffe M, Minkin S (2009) Mammographic density and breast cancer risk: evaluation of a novel method of measuring breast tissue volumes. Cancer Epidemiol Biomark Prev 18(6):1754–1762. doi: 10.1158/1055-9965.EPI-09-0107 CrossRefGoogle Scholar
  11. 11.
    Byrne C, Schairer C, Wolfe J, Parekh N, Salane M, Brinton LA, Hoover R, Haile R (1995) Mammographic features and breast cancer risk: effects with time, age, and menopause status. J Natl Cancer Inst 87(21):1622–1629PubMedCrossRefGoogle Scholar
  12. 12.
    Kato I, Beinart C, Bleich A, Su S, Kim M, Toniolo PG (1995) A nested case–control study of mammographic patterns, breast volume, and breast cancer (New York City, NY, United States). Cancer Causes Control 6(5):431–438PubMedCrossRefGoogle Scholar
  13. 13.
    Nagata C, Matsubara T, Fujita H, Nagao Y, Shibuya C, Kashiki Y, Shimizu H (2005) Mammographic density and the risk of breast cancer in Japanese women. Br J Cancer 92(12):2102–2106. doi: 10.1038/sj.bjc.6602643 PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Woolcott CG, Courneya KS, Boyd NF, Yaffe MJ, Terry T, McTiernan A, Brant R, Ballard-Barbash R, Irwin ML, Jones CA, Brar S, Campbell KL, McNeely ML, Karvinen KH, Friedenreich CM (2010) Mammographic density change with 1 year of aerobic exercise among postmenopausal women: a randomized controlled trial. Cancer Epidemiol Biomark Prev 19(4):1112–1121. doi: 10.1158/1055-9965.EPI-09-0801 CrossRefGoogle Scholar
  15. 15.
    Brisson J, Morrison AS, Kopans DB, Sadowsky NL, Kalisher L, Twaddle JA, Meyer JE, Henschke CI, Cole P (1984) Height and weight, mammographic features of breast tissue, and breast cancer risk. Am J Epidemiol 119(3):371–381PubMedGoogle Scholar
  16. 16.
    Grove JS, Goodman MJ, Gilbert FI Jr, Mi MP (1985) Factors associated with mammographic pattern. Br J Radiol 58(685):21–25PubMedCrossRefGoogle Scholar
  17. 17.
    Irwin ML, Aiello EJ, McTiernan A, Bernstein L, Gilliland FD, Baumgartner RN, Baumgartner KB, Ballard-Barbash R (2007) Physical activity, body mass index, and mammographic density in postmenopausal breast cancer survivors. J Clin Oncol 25(9):1061–1066. doi: 10.1200/JCO.2006.07.3965 PubMedCrossRefGoogle Scholar
  18. 18.
    Sun X, Gierach GL, Sandhu R, Williams T, Midkiff BR, Lissowska J, Wesolowska E, Boyd NF, Johnson NB, Figueroa JD, Sherman ME, Troester MA (2013) Relationship of mammographic density and gene expression: analysis of normal breast tissue surrounding breast cancer. Clin Cancer Res 19(18):4972–4982. doi: 10.1158/1078-0432.CCR-13-0029 PubMedCrossRefGoogle Scholar
  19. 19.
    Signori C, DuBrock C, Richie JP, Prokopczyk B, Demers LM, Hamilton C, Hartman TJ, Liao J, El-Bayoumy K, Manni A (2012) Administration of omega-3 fatty acids and Raloxifene to women at high risk of breast cancer: interim feasibility and biomarkers analysis from a clinical trial. Eur J Clin Nutr 66(8):878–884. doi: 10.1038/ejcn.2012.60 PubMedCrossRefGoogle Scholar
  20. 20.
    Subar AF, Thompson FE, Kipnis V, Midthune D, Hurwitz P, McNutt S, McIntosh A, Rosenfeld S (2001) Comparative validation of the Block, Willett, and National Cancer Institute food frequency questionnaires : the Eating at America’s Table Study. Am J Epidemiol 154(12):1089–1099PubMedCrossRefGoogle Scholar
  21. 21.
    Miller PE, Lazarus P, Lesko SM, Muscat JE, Harper G, Cross AJ, Sinha R, Ryczak K, Escobar G, Mauger DT, Hartman TJ (2010) Diet index-based and empirically derived dietary patterns are associated with colorectal cancer risk. J Nutr 140(7):1267–1273. doi: 10.3945/jn.110.121780 PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Craig CL, Marshall AL, Sjostrom M, Bauman AE, Booth ML, Ainsworth BE, Pratt M, Ekelund U, Yngve A, Sallis JF, Oja P (2003) International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc 35(8):1381–1395. doi: 10.1249/01.MSS.0000078924.61453.FB PubMedCrossRefGoogle Scholar
  23. 23.
    Redondo A, Comas M, Macia F, Ferrer F, Murta-Nascimento C, Maristany MT, Molins E, Sala M, Castells X (2012) Inter- and intraradiologist variability in the BI-RADS assessment and breast density categories for screening mammograms. Br J Radiol 85(1019):1465–1470. doi: 10.1259/bjr/21256379 PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Kerlikowske K, Grady D, Barclay J, Frankel SD, Ominsky SH, Sickles EA, Ernster V (1998) Variability and accuracy in mammographic interpretation using the American College of Radiology Breast Imaging Reporting and Data System. J Natl Cancer Inst 90(23):1801–1809PubMedCrossRefGoogle Scholar
  25. 25.
    Kleinbaum DG, Kupper LL, Muller KE, Nizam A (1997) Applied regression analysis and multivariable methods. Duxbury Press, New YorkGoogle Scholar
  26. 26.
    Lawlor DA, Okasha M, Gunnell D, Smith GD, Ebrahim S (2003) Associations of adult measures of childhood growth with breast cancer: findings from the British Women’s Heart and Health Study. Br J Cancer 89(1):81–87. doi: 10.1038/sj.bjc.6600972 PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Hunter DJ, Willett WC (1993) Diet, body size, and breast cancer. Epidemiol Rev 15(1):110–132PubMedGoogle Scholar
  28. 28.
    Ekbom A, Thurfjell E, Hsieh CC, Trichopoulos D, Adami HO (1995) Perinatal characteristics and adult mammographic patterns. Int J Cancer 61(2):177–180PubMedCrossRefGoogle Scholar
  29. 29.
    Lindgren J, Dorgan J, Savage-Williams J, Coffman D, Hartman T (2013) Diet across the lifespan and the association with breast density in adulthood. Int J Breast Cancer 2013:808317. doi: 10.1155/2013/808317 PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Yaghjyan L, Colditz GA, Wolin K (2012) Physical activity and mammographic breast density: a systematic review. Breast Cancer Res Treat 135(2):367–380. doi: 10.1007/s10549-012-2152-z PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Willet W (2013) Implications of total energy intake for epidemiologic analyses. In: Willet W (ed) Nutritional epidemiology, 3rd edn. Oxford University Press, New YorkGoogle Scholar
  32. 32.
    Berglund G (2002) Anthropometry, physical activity and cancer of the breast and colon. IARC Sci Publ 156:237–241PubMedGoogle Scholar
  33. 33.
    Masala G, Assedi M, Ambrogetti D, Sera F, Salvini S, Bendinelli B, Ermini I, Giorgi D, Rosselli del Turco M, Palli D (2009) Physical activity and mammographic breast density in a Mediterranean population: the EPIC Florence longitudinal study. Int J Cancer 124(7):1654–1661. doi: 10.1002/ijc.24099 PubMedCrossRefGoogle Scholar
  34. 34.
    Gram IT, Funkhouser E, Tabar L (1999) Moderate physical activity in relation to mammographic patterns. Cancer Epidemiol Biomark Prev 8(2):117–122Google Scholar
  35. 35.
    Lopez P, Van Horn L, Colangelo LA, Wolfman JA, Hendrick RE, Gapstur SM (2003) Physical inactivity and percent breast density among Hispanic women. Int J Cancer 107(6):1012–1016. doi: 10.1002/ijc.11495 PubMedCrossRefGoogle Scholar
  36. 36.
    Peters TM, Ekelund U, Leitzmann M, Easton D, Warren R, Luben R, Bingham S, Khaw KT, Wareham NJ (2008) Physical activity and mammographic breast density in the EPIC-Norfolk cohort study. Am J Epidemiol 167(5):579–585. doi: 10.1093/aje/kwm350 PubMedCrossRefGoogle Scholar
  37. 37.
    Suijkerbuijk KP, Van Duijnhoven FJ, Van Gils CH, Van Noord PA, Peeters PH, Friedenreich CM, Monninkhof EM (2006) Physical activity in relation to mammographic density in the Dutch prospect–European prospective investigation into cancer and nutrition cohort. Cancer Epidemiol Biomark Prev 15(3):456–460. doi: 10.1158/1055-9965.EPI-05-0569 CrossRefGoogle Scholar
  38. 38.
    Oestreicher N, Capra A, Bromberger J, Butler LM, Crandall CJ, Gold EB, Greendale GA, Modugno F, Sternfeld B, Habel LA (2008) Physical activity and mammographic density in a cohort of midlife women. Med Sci Sports Exerc 40(3):451–456. doi: 10.1249/MSS.0b013e31815f5b47 PubMedCrossRefGoogle Scholar
  39. 39.
    Siozon CC, Ma H, Hilsen M, Bernstein L, Ursin G (2006) The association between recreational physical activity and mammographic density. Int J Cancer 119(7):1695–1701. doi: 10.1002/ijc.22020 PubMedCrossRefGoogle Scholar
  40. 40.
    Reeves KW, Gierach GL, Modugno F (2007) Recreational physical activity and mammographic breast density characteristics. Cancer Epidemiol Biomark Prev 16(5):934–942. doi: 10.1158/1055-9965.EPI-06-0732 CrossRefGoogle Scholar
  41. 41.
    Samimi G, Colditz GA, Baer HJ, Tamimi RM (2008) Measures of energy balance and mammographic density in the Nurses’ Health Study. Breast Cancer Res Treat 109(1):113–122. doi: 10.1007/s10549-007-9631-7 PubMedCrossRefGoogle Scholar
  42. 42.
    Neilson HK, Friedenreich CM, Brockton NT, Millikan RC (2009) Physical activity and postmenopausal breast cancer: proposed biologic mechanisms and areas for future research. Cancer Epidemiol Biomark Prev 18(1):11–27. doi: 10.1158/1055-9965.EPI-08-0756 CrossRefGoogle Scholar
  43. 43.
    McTiernan A, Tworoger SS, Ulrich CM, Yasui Y, Irwin ML, Rajan KB, Sorensen B, Rudolph RE, Bowen D, Stanczyk FZ, Potter JD, Schwartz RS (2004) Effect of exercise on serum estrogens in postmenopausal women: a 12-month randomized clinical trial. Cancer Res 64(8):2923–2928PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Susann E. Schetter
    • 1
  • Terryl J. Hartman
    • 4
  • Jason Liao
    • 2
  • John P. Richie
    • 2
  • Bogdan Prokopczyk
    • 3
  • Cindy DuBrock
    • 5
  • Carina Signori
    • 6
  • Christopher Hamilton
    • 7
  • Laurence M. Demers
    • 7
  • Karam El-Bayoumy
    • 8
  • Andrea Manni
    • 6
    Email author
  1. 1.Departments of RadiologyPennsylvania State University College of MedicineHersheyUSA
  2. 2.Departments of Public Health SciencesPennsylvania State University College of MedicineHersheyUSA
  3. 3.Departments of PharmacologyPennsylvania State University College of MedicineHersheyUSA
  4. 4.Emory University Rollins School of Public HealthAtlantaUSA
  5. 5.Cancer InstitutePennsylvania State University College of MedicineHersheyUSA
  6. 6.Departments of MedicinePennsylvania State University College of MedicineHersheyUSA
  7. 7.Departments of PathologyPennsylvania State University College of MedicineHersheyUSA
  8. 8.Departments of Biochemistry and Molecular BiologyPennsylvania State University College of MedicineHersheyUSA

Personalised recommendations