Breast Cancer Research and Treatment

, Volume 146, Issue 1, pp 15–24 | Cite as

Expression of programmed death ligand 1 (PD-L1) is associated with poor prognosis in human breast cancer

  • S. Muenst
  • A. R. Schaerli
  • F. Gao
  • S. Däster
  • E. Trella
  • R. A. Droeser
  • M. G. Muraro
  • P. Zajac
  • R. Zanetti
  • W. E. Gillanders
  • W. P. Weber
  • S. D. Soysal
Preclinical study

Abstract

Recent studies in multiple epithelial cancers have shown that the inhibitory receptor programmed cell death 1 (PD-1) is expressed on tumor-infiltrating lymphocytes and/or programmed death ligand 1 (PD-L1) is expressed on tumor cells, suggesting that antitumor immunity may be modulated by the PD-1/PD-L1 signaling pathway. In addition, phase 1 clinical trials with monoclonal antibodies targeting PD-1 or PD-L1 have shown promising results in several human cancers. The purpose of this study was to investigate the impact of PD-L1 expression in human breast cancer specimens. We conducted an immunohistochemistry study using a tissue microarray encompassing 650 evaluable formalin-fixed breast cancer cases with detailed clinical annotation and outcomes data. PD-L1 was expressed in 152 (23.4 %) of the 650 breast cancer specimens. Expression was significantly associated with age, tumor size, AJCC primary tumor classification, tumor grade, lymph node status, absence of ER expression, and high Ki-67 expression. In univariate analysis, PD-L1 expression was associated with a significantly worse OS. In multivariate analysis, PD-L1 expression remained an independent negative prognostic factor for OS. In subset analyses, expression of PD-L1 was associated with significantly worse OS in the luminal B HER2 subtype, the luminal B HER2+ subtype, the HER2 subtype, and the basal-like subtype. This is the first study to demonstrate that PD-L1 expression is an independent negative prognostic factor in human breast cancer. This finding has important implications for the application of antibody therapies targeting the PD-1/PD-L1 signaling pathway in this disease.

Keywords

PD-L1 PD-1 Tumor immunology breast cancer Prognostic factor TIL 

References

  1. 1.
    Dermime S et al (2004) Vaccine and antibody-directed T cell tumour immunotherapy. Biochim Biophys Acta 1704(1):11–35PubMedGoogle Scholar
  2. 2.
    Bour-Jordan H et al (2011) Intrinsic and extrinsic control of peripheral T-cell tolerance by costimulatory molecules of the CD28/B7 family. Immunol Rev 241(1):180–205PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Mueller DL, Jenkins MK, Schwartz RH (1989) Clonal expansion versus functional clonal inactivation: a costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy. Annu Rev Immunol 7:445–480PubMedCrossRefGoogle Scholar
  4. 4.
    Liang SC et al (2003) Regulation of PD-1, PD-L1, and PD-L2 expression during normal and autoimmune responses. Eur J Immunol 33(10):2706–2716PubMedCrossRefGoogle Scholar
  5. 5.
    Probst HC et al (2005) Resting dendritic cells induce peripheral CD8 + T cell tolerance through PD-1 and CTLA-4. Nat Immunol 6(3):280–286PubMedCrossRefGoogle Scholar
  6. 6.
    Keir ME et al (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704PubMedCrossRefGoogle Scholar
  7. 7.
    Flies DB et al (2011) Blockade of the B7-H1/PD-1 pathway for cancer immunotherapy. Yale J Biol Med 84(4):409–421PubMedCentralPubMedGoogle Scholar
  8. 8.
    Latchman Y et al (2001) PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2(3):261–268PubMedCrossRefGoogle Scholar
  9. 9.
    Freeman GJ et al (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192(7):1027–1034PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Konishi J et al (2004) B7-H1 expression on non-small cell lung cancer cells and its relationship with tumor-infiltrating lymphocytes and their PD-1 expression. Clin Cancer Res 10(15):5094–5100PubMedCrossRefGoogle Scholar
  11. 11.
    Nomi T et al (2007) Clinical significance and therapeutic potential of the programmed death-1 ligand/programmed death-1 pathway in human pancreatic cancer. Clin Cancer Res 13(7):2151–2157PubMedCrossRefGoogle Scholar
  12. 12.
    Ohigashi Y et al (2005) Clinical significance of programmed death-1 ligand-1 and programmed death-1 ligand-2 expression in human esophageal cancer. Clin Cancer Res 11(8):2947–2953PubMedCrossRefGoogle Scholar
  13. 13.
    Strome SE et al (2003) B7-H1 blockade augments adoptive T-cell immunotherapy for squamous cell carcinoma. Cancer Res 63(19):6501–6505PubMedGoogle Scholar
  14. 14.
    Iwai Y et al (2002) Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci USA 99(19):12293–12297PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Dong H et al (2002) Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8(8):793–800PubMedGoogle Scholar
  16. 16.
    Thompson RH et al (2007) PD-1 is expressed by tumor-infiltrating immune cells and is associated with poor outcome for patients with renal cell carcinoma. Clin Cancer Res 13(6):1757–1761PubMedCrossRefGoogle Scholar
  17. 17.
    Thompson RH et al (2004) Costimulatory B7-H1 in renal cell carcinoma patients: indicator of tumor aggressiveness and potential therapeutic target. Proc Natl Acad Sci USA 101(49):17174–17179PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Blank C, Gajewski TF, Mackensen A (2005) Interaction of PD-L1 on tumor cells with PD-1 on tumor-specific T cells as a mechanism of immune evasion: implications for tumor immunotherapy. Cancer Immunol Immunother 54(4):307–314PubMedCrossRefGoogle Scholar
  19. 19.
    Morse MA et al (2005) Recent developments in therapeutic cancer vaccines. Nat Clin Pract Oncol 2(2):108–113PubMedCrossRefGoogle Scholar
  20. 20.
    Rosenberg SA, Yang JC, Restifo NP (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10(9):909–915PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Li B et al (2009) Anti-programmed death-1 synergizes with granulocyte macrophage colony-stimulating factor–secreting tumor cell immunotherapy providing therapeutic benefit to mice with established tumors. Clin Cancer Res 15(5):1623–1634PubMedCrossRefGoogle Scholar
  22. 22.
    Wang W et al (2009) PD1 blockade reverses the suppression of melanoma antigen-specific CTL by CD4 + CD25(Hi) regulatory T cells. Int Immunol 21(9):1065–1077PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Mangsbo SM et al (2010) Enhanced tumor eradication by combining CTLA-4 or PD-1 blockade with CpG therapy. J Immunother 33(3):225–235PubMedCrossRefGoogle Scholar
  24. 24.
    Brahmer JR et al (2010) Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol 28(19):3167–3175PubMedCrossRefGoogle Scholar
  25. 25.
    Topalian SL et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366(26):2443–2454PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Berger R et al (2008) Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malignancies. Clin Cancer Res 14(10):3044–3051PubMedCrossRefGoogle Scholar
  27. 27.
    Hamid O et al (2013) Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med 369(2):134–144PubMedCrossRefGoogle Scholar
  28. 28.
    Brahmer JR et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366(26):2455–2465PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Jemal A et al (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90PubMedCrossRefGoogle Scholar
  30. 30.
    Liyanage UK et al (2002) Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol 169(5):2756–2761PubMedCrossRefGoogle Scholar
  31. 31.
    Droeser R et al (2012) Differential pattern and prognostic significance of CD4+ , FOXP3+ and IL-17+ tumor infiltrating lymphocytes in ductal and lobular breast cancers. BMC Cancer 12:134PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Czerniecki BJ et al (2007) Targeting HER-2/neu in early breast cancer development using dendritic cells with staged interleukin-12 burst secretion. Cancer Res 67(4):1842–1852PubMedCrossRefGoogle Scholar
  33. 33.
    Ghebeh H et al (2008) FOXP3+ Tregs and B7-H1+/PD-1+ T lymphocytes co-infiltrate the tumor tissues of high-risk breast cancer patients: implication for immunotherapy. BMC Cancer 8:57PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Ghebeh H et al (2006) The B7-H1 (PD-L1) T lymphocyte-inhibitory molecule is expressed in breast cancer patients with infiltrating ductal carcinoma: correlation with important high-risk prognostic factors. Neoplasia 8(3):190–198PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Muenst S et al (2013) The presence of programmed death 1 (PD-1)-positive tumor-infiltrating lymphocytes is associated with poor prognosis in human breast cancer. Breast Cancer Res Treat 139(3):667–676PubMedCrossRefGoogle Scholar
  36. 36.
    Goldhirsch A et al (2011) Strategies for subtypes–dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol 22(8):1736–1747PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Ghebeh H et al (2007) Expression of B7-H1 in breast cancer patients is strongly associated with high proliferative Ki-67-expressing tumor cells. Int J Cancer 121(4):751–758PubMedCrossRefGoogle Scholar
  38. 38.
    Hasan A et al (2011) Therapeutic targeting of B7-H1 in breast cancer. Expert Opin Ther Targets 15(10):1211–1225PubMedCrossRefGoogle Scholar
  39. 39.
    Schalper K.A et al (2014) In situ tumor PD-L1 mRNA expression is associated with increased TILs and better outcome in breast carcinomas. Clin Cancer ResGoogle Scholar
  40. 40.
    McShane LM et al (2006) Reporting recommendations for tumor marker prognostic studies (remark). Exp Oncol 28(2):99–105PubMedGoogle Scholar
  41. 41.
    Bubendorf L et al (2001) Tissue microarray (TMA) technology: miniaturized pathology archives for high-throughput in situ studies. J Pathol 195(1):72–79PubMedCrossRefGoogle Scholar
  42. 42.
    McCarty KS Jr et al (1985) Estrogen receptor analyses. Correlation of biochemical and immunohistochemical methods using monoclonal antireceptor antibodies. Arch Pathol Lab Med 109(8):716–721PubMedGoogle Scholar
  43. 43.
    Tapia C et al (2004) HER2 analysis in breast cancer: reduced immunoreactivity in FISH non-informative cancer biopsies. Int J Oncol 25(6):1551–1557PubMedGoogle Scholar
  44. 44.
    Perou CM et al (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752PubMedCrossRefGoogle Scholar
  45. 45.
    Prat A, Perou CM (2011) Deconstructing the molecular portraits of breast cancer. Mol Oncol 5(1):5–23PubMedCrossRefGoogle Scholar
  46. 46.
    Blows FM et al (2010) Subtyping of breast cancer by immunohistochemistry to investigate a relationship between subtype and short and long term survival: a collaborative analysis of data for 10,159 cases from 12 studies. PLoS Med 7(5):e1000279PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Soliman H, Khalil F, Antonia S (2014) PD-L1 Expression Is Increased in a Subset of Basal Type Breast Cancer Cells. PLoS ONE 9(2):e88557PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Velcheti V et al (2014) Programmed death ligand-1 expression in non-small cell lung cancer. Lab Invest 94(1):107–116PubMedCrossRefGoogle Scholar
  49. 49.
    Taube JM et al (2012) Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med 4(127):127–137CrossRefGoogle Scholar
  50. 50.
    Lipson EJ et al (2013) PD-L1 expression in the Merkel cell carcinoma microenvironment: Association with inflammation, Merkel cell polyomavirus and overall survival. Cancer Immunol Res 1Google Scholar
  51. 51.
    Droeser RA et al (2013) Clinical impact of programmed cell death ligand 1 expression in colorectal cancer. Eur J Cancer 49(9):2233–2242PubMedCrossRefGoogle Scholar
  52. 52.
    Zang X, Allison JP (2007) The B7 family and cancer therapy: costimulation and coinhibition. Clin Cancer Res 13(18 Pt 1):5271–5279PubMedCrossRefGoogle Scholar
  53. 53.
    Hino R et al (2010) Tumor cell expression of programmed cell death-1 ligand 1 is a prognostic factor for malignant melanoma. Cancer 116(7):1757–1766PubMedCrossRefGoogle Scholar
  54. 54.
    Mu CY et al (2011) High expression of PD-L1 in lung cancer may contribute to poor prognosis and tumor cells immune escape through suppressing tumor infiltrating dendritic cells maturation. Med Oncol 28(3):682–688PubMedCrossRefGoogle Scholar
  55. 55.
    Song M et al (2013) PTEN loss increases PD-L1 protein expression and affects the correlation between PD-L1 expression and clinical parameters in colorectal cancer. PLoS ONE 8(6):e65821PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Seo SK et al (2006) Co-inhibitory role of T-cell-associated B7-H1 and B7-DC in the T-cell immune response. Immunol Lett 102(2):222–228PubMedCrossRefGoogle Scholar
  57. 57.
    Cariani E et al (2012) Immunological and molecular correlates of disease recurrence after liver resection for hepatocellular carcinoma. PLoS ONE 7(3):e32493PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • S. Muenst
    • 1
  • A. R. Schaerli
    • 2
  • F. Gao
    • 3
  • S. Däster
    • 2
    • 4
  • E. Trella
    • 4
  • R. A. Droeser
    • 2
    • 4
  • M. G. Muraro
    • 4
  • P. Zajac
    • 4
  • R. Zanetti
    • 5
  • W. E. Gillanders
    • 6
  • W. P. Weber
    • 2
  • S. D. Soysal
    • 2
    • 4
  1. 1.Institute of PathologyUniversity Hospital BaselBaselSwitzerland
  2. 2.Department of SurgeryUniversity Hospital BaselBaselSwitzerland
  3. 3.Division of BiostatisticsWashington University School of MedicineSt. LouisUSA
  4. 4.Institute of Surgical Research and Hospital Management (ICFS) and Department of BiomedicineUniversity of BaselBaselSwitzerland
  5. 5.Department of GynecologyUniversity Hospital BaselBaselSwitzerland
  6. 6.Department of SurgeryWashington University School of MedicineSt. LouisUSA

Personalised recommendations