Skip to main content

Advertisement

Log in

Regulation of apoptosis by long non-coding RNA GAS5 in breast cancer cells: implications for chemotherapy

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

The putative tumour suppressor and apoptosis-promoting gene, growth arrest-specific 5 (GAS5), encodes long ncRNA (lncRNA) and snoRNAs. Its expression is down-regulated in breast cancer, which adversely impacts patient prognosis. In this preclinical study, the consequences of decreased GAS5 expression for breast cancer cell survival following treatment with chemotherapeutic agents are addressed. In addition, functional responses of triple-negative breast cancer cells to GAS5 lncRNA are examined, and mTOR inhibition as a strategy to enhance cellular GAS5 levels is investigated. Breast cancer cell lines were transfected with either siRNA to GAS5 or with a plasmid encoding GAS5 lncRNA and the effects on breast cancer cell survival were determined. Cellular responses to mTOR inhibitors were evaluated by assaying culture growth and GAS5 transcript levels. GAS5 silencing attenuated cell responses to apoptotic stimuli, including classical chemotherapeutic agents; the extent of cell death was directly proportional to cellular GAS5 levels. Imatinib action in contrast, was independent of GAS5. GAS5 lncRNA promoted the apoptosis of triple-negative and oestrogen receptor-positive cells but only dual PI3K/mTOR inhibition was able to enhance GAS5 levels in all cell types. Reduced GAS5 expression attenuates apoptosis induction by classical chemotherapeutic agents in breast cancer cells, providing an explanation for the relationship between GAS5 expression and breast cancer patient prognosis. Clinically, this relationship may be circumvented by the use of GAS5-independent drugs such as imatinib, or by restoration of GAS5 expression. The latter may be achieved by the use of a dual PI3K/mTOR inhibitor, to improve apoptotic responses to conventional chemotherapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

A490:

Absorbance at 490 nm

C T :

Threshold cycle

EST:

Expressed sequence tag

5-FU:

5-Fluorouracil

GAS5:

Growth arrest-specific 5

HER2:

Human epidermal growth factor receptor 2

lncRNA:

Long ncRNA

MCT:

Multiple comparison test

NC:

Negative control

ncRNA:

Non-coding RNA

NMD:

Nonsense-mediated decay

RT-qPCR:

Real time reverse transcription polymerase chain reaction

5′-TOP:

5′-Terminal oligopyrimidine tract

TNBC:

Triple-negative breast cancer

UV-C:

Ultraviolet-C

References

  1. Gibb EA, Brown CJ, Lam WL (2011) The functional role of long non-coding RNA in human carcinomas. Mol Cancer 10:38

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Gutschner T, Diederichs S (2012) The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol 9:703–719

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Shore AN, Herschkowitz JI, Rosen JM (2012) Noncoding RNAs involved in mammary gland development and tumorigenesis: there’s a long way to go. J Mammary Gland Biol Neoplasia 17:43–58

    Article  PubMed Central  PubMed  Google Scholar 

  4. Spizzo R, Almeida MI, Colombatti A, Calin GA (2012) Long non-coding RNAs and cancer: a new frontier of translational research? Oncogene 31:4577–4587

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Cheetham SW, Gruhl F, Mattick JS, Dinger ME (2013) Long noncoding RNAs and the genetics of cancer. Br J Cancer 108:2419–2425

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Sana J, Faltejskova P, Svoboda M, Slaby O (2012) Novel classes of non-coding RNAs and cancer. J Transl Med 10:103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Kung JT, Colognori D, Lee JT (2013) Long noncoding RNAs: past, present, and future. Genetics 193:651–669

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43:904–914

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Mourtada-Maarabouni M, Pickard MR, Hedge VL, Farzaneh F, Williams GT (2009) GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene 28:195–208

    Article  CAS  PubMed  Google Scholar 

  10. Gee HE, Buffa FM, Camps C, Ramachandran A, Leek R, Taylor M, Patil M, Sheldon H, Betts G, Homer J, West C, Ragoussis J, Harris AL (2011) The small-nucleolar RNAs commonly used for microRNA normalisation correlate with tumour pathology and prognosis. Br J Cancer 104:1168–1177

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Smith CM, Steitz JA (1998) Classification of gas5 as a multi-small-nucleolar-RNA (snoRNA) host gene and a member of the 5′-terminal oligopyrimidine gene family reveals common features of snoRNA host genes. Mol Cell Biol 18:6897–6909

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Brameier M, Herwig A, Reinhardt R, Walter L, Gruber J (2011) Human box C/D snoRNAs with miRNA like functions: expanding the range of regulatory RNAs. Nucleic Acids Res 39:675–686

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Schneider C, King RM, Philipson L (1988) Genes specifically expressed at growth arrest of mammalian cells. Cell 54:787–793

    Article  CAS  PubMed  Google Scholar 

  14. Williams GT, Farzaneh F (2012) Are snoRNAs and snoRNA host genes new players in cancer? Nat Rev Cancer 12:84–88

    CAS  PubMed  Google Scholar 

  15. Mourtada-Maarabouni M, Hasan AM, Farzaneh F, Williams GT (2010) Inhibition of human T-cell proliferation by mammalian target of rapamycin (mTOR) antagonists requires noncoding RNA growth-arrest-specific transcript 5 (GAS5). Mol Pharmacol 78:19–28

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Williams GT, Mourtada-Maarabouni M, Farzaneh F (2011) A critical role for non-coding RNA GAS5 in growth arrest and rapamycin inhibition in human T-lymphocytes. Biochem Soc Trans 39:482–486

    Article  CAS  PubMed  Google Scholar 

  17. Williams GT, Hughes JP, Stoneman V, Anderson CL, McCarthy NJ, Mourtada-Maarabouni M, Pickard M, Hedge VL, Trayner I, Farzaneh F (2006) Isolation of genes controlling apoptosis through their effects on cell survival. Gene Ther Mol Biol 10B:255–262

    Google Scholar 

  18. Mourtada-Maarabouni M, Hedge VL, Kirkham L, Farzaneh F, Williams GT (2008) Growth arrest in human T-cells is controlled by the non-coding RNA growth-arrest-specific transcript 5 (GAS5). J Cell Sci 121:939–946

    Article  CAS  PubMed  Google Scholar 

  19. Kino T, Hurt DE, Ichijo T, Nader N, Chrousos GP (2010) Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci Signal 3:ra8

    PubMed Central  PubMed  Google Scholar 

  20. Pickard MR, Mourtada-Maarabouni M, Williams GT (2013) Long non-coding RNA GAS5 regulates apoptosis in prostate cancer cell lines. Biochim Biophys Acta 1832:1613–1623

    Article  CAS  PubMed  Google Scholar 

  21. Zhang Z, Zhu Z, Watabe K, Zhang X, Bai C, Xu M, Wu F, Mo YY (2013) Negative regulation of lncRNA GAS5 by miR-21. Cell Death Differ 20:1558–1568

    Article  CAS  PubMed  Google Scholar 

  22. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  23. McKenzie S, Kyprianou N (2006) Apoptosis evasion: the role of survival pathways in prostate cancer progression and therapeutic resistance. J Cell Biochem 97:18–32

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Indran IR, Tufo G, Pervaiz S, Brenner C (2011) Recent advances in apoptosis, mitochondria and drug resistance in cancer cells. Biochim Biophys Acta 1807:735–745

    Article  CAS  PubMed  Google Scholar 

  25. Mohamed A, Krajewski K, Cakar B, Ma CX (2013) Targeted therapy for breast cancer. Am J Pathol 183:1096–1112

    Article  CAS  PubMed  Google Scholar 

  26. Palmieri C, Patten DK, Januszewski A, Zucchini G, Howell SJ (2014) Breast cancer: current and future endocrine therapies. Mol Cell Endocrinol 382:695–723

    Article  CAS  PubMed  Google Scholar 

  27. Engebraaten O, Vollan HK, Børresen-Dale AL (2013) Triple-negative breast cancer and the need for new therapeutic targets. Am J Pathol 183:1064–1074

    Article  CAS  PubMed  Google Scholar 

  28. Kano Y, Akutsu M, Tsunoda S, Mano H, Sato Y, Honma Y, Furukawa Y (2001) In vitro cytotoxic effects of a tyrosine kinase inhibitor STI571 in combination with commonly used antileukemic agents. Blood 97:1999–2007

    Article  CAS  PubMed  Google Scholar 

  29. Sims JT, Ganguly S, Fiore LS, Holler CJ, Park ES, Plattner R (2009) STI571 sensitizes breast cancer cells to 5-fluorouracil, cisplatin and camptothecin in a cell type-specific manner. Biochem Pharmacol 78:249–260

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Weigel MT, Dahmke L, Schem C, Bauerschlag DO, Weber K, Niehoff P, Bauer M, Strauss A, Jonat W, Maass N, Mundhenke C (2010) In vitro effects of imatinib mesylate on radiosensitivity and chemosensitivity of breast cancer cells. BMC Cancer 10:412

    Article  PubMed Central  PubMed  Google Scholar 

  31. Chen Y, Zheng Y, Foster DA (2003) Phospholipase D confers rapamycin resistance in human breast cancer cells. Oncogene 22:3937–3942

    Article  CAS  PubMed  Google Scholar 

  32. Chen G, Yang N, Wang X, Zheng SY, Chen Y, Tong LJ, Li YX, Meng LH, Ding J (2010) Identification of p27/KIP1 expression level as a candidate biomarker of response to rapalogs therapy in human cancer. J Mol Med (Berl) 88:941–952

    Article  CAS  Google Scholar 

  33. Noh WC, Mondesire WH, Peng J, Jian W, Zhang H, Dong J, Mills GB, Hung MC, Meric-Bernstam F (2004) Determinants of rapamycin sensitivity in breast cancer cells. Clin Cancer Res 10:1013–1023

    Article  CAS  PubMed  Google Scholar 

  34. Wong SW, Tiong KH, Kong WY, Yue YC, Chua CH, Lim JY, Lee CY, Quah SI, Fow C, Chung C, So I, Tan BS, Choo HL, Rosli R, Cheong SK, Leong CO (2011) Rapamycin synergizes cisplatin sensitivity in basal-like breast cancer cells through up-regulation of p73. Breast Cancer Res Treat 128:301–313

    Article  CAS  PubMed  Google Scholar 

  35. Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, Pastorino S, Purow BW, Christopher N, Zhang W, Park JK, Fine HA (2006) Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9:391–403

    Article  CAS  PubMed  Google Scholar 

  36. Qiao HP, Gao WS, Huo JX, Yang ZS (2013) Long non-coding RNA GAS5 functions as a tumor suppressor in renal cell carcinoma. Asian Pac J Cancer Prev 14:1077–1082

    Article  PubMed  Google Scholar 

  37. Liu Z, Wang W, Jiang J, Bao E, Xu D, Zeng Y, Tao L, Qiu J (2013) Downregulation of GAS5 promotes bladder cancer cell proliferation, partly by regulating CDK6. PLoS One 8:e73991

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Lu X, Fang Y, Wang Z, Xie J, Zhan Q, Deng X, Chen H, Jin J, Peng C, Li H, Shen B (2013) Downregulation of gas5 increases pancreatic cancer cell proliferation by regulating CDK6. Cell Tissue Res 354:891–896

    Article  CAS  PubMed  Google Scholar 

  39. Shi X, Sun M, Liu H, Yao Y, Kong R, Chen F, Song Y (2013) A critical role for the long non-coding RNA GAS5 in proliferation and apoptosis in non-small-cell lung cancer. Mol Carcinog. doi: 10.1002/mc.22120

Download references

Acknowledgment

This study was supported by a grant from the Breast Cancer Campaign, which is gratefully acknowledged.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mark R. Pickard or Gwyn T. Williams.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pickard, M.R., Williams, G.T. Regulation of apoptosis by long non-coding RNA GAS5 in breast cancer cells: implications for chemotherapy. Breast Cancer Res Treat 145, 359–370 (2014). https://doi.org/10.1007/s10549-014-2974-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-014-2974-y

Keywords

Navigation