Advertisement

Breast Cancer Research and Treatment

, Volume 146, Issue 1, pp 163–174 | Cite as

Plasma DNA integrity as a biomarker for primary and metastatic breast cancer and potential marker for early diagnosis

  • Dharanija Madhavan
  • Markus Wallwiener
  • Karin Bents
  • Manuela Zucknick
  • Juliane Nees
  • Sarah Schott
  • Katarina Cuk
  • Sabine Riethdorf
  • Andreas Trumpp
  • Klaus Pantel
  • Christof Sohn
  • Andreas Schneeweiss
  • Harald SurowyEmail author
  • Barbara Burwinkel
Epidemiology

Abstract

Circulating or cell-free DNA (cfDNA) has been evaluated as a biomarker in many cancers including breast cancer. In particular, integrity of cfDNA has been shown to be altered in cancers. We have estimated the biomarker potential of cfDNA in primary (PBC) and metastatic breast cancer (MBC). cfDNA integrity (cfDI) and concentration were determined in plasma of 383 individuals, including 82 PBC and 201 MBC cases, as well as 100 healthy controls, by measuring ALU and LINE1 repetitive DNA elements using quantitative PCR. The MBC patient group was further sub-divided into patients with detectable circulating tumour cells (CTCpos-MBC, n = 100) and those without (CTCneg-MBC, n = 101). A hierarchical decrease in cfDI and increase in cfDNA concentration from healthy controls to PBC and further onto MBC patients were observed. Investigation of cfDNA in media of cell lines was in concordance with these results. Combination of cfDI and cfDNA concentration could differentiate PBC cases from controls (area under the curve, AUC = 0.75), MBC cases from controls (AUC = 0.81 for CTCneg-MBC, AUC = 0.93 for CTCpos-MBC), and CTCneg-MBC from CTCpos-MBC cases (AUC = 0.83). cfDI additionally demonstrated a positive correlation to progression-free (HR of 0.46 for ALU, P = 0.0025) and overall survival (HR of 0.15 for ALU and 0.20 for LINE1, P < 0.0001) in MBC, and had lower prediction error than CTC status. Our findings show that reduced cfDI and increased cfDNA concentration can serve as diagnostic markers for PBC and MBC, and cfDI as a prognostic marker for MBC, thereby making them attractive candidates for blood-based multi-marker assays.

Keywords

Breast cancer Circulating DNA DNA integrity Diagnostic marker Prognostic marker 

Abbreviations

AUC

Area under the curve

cfDNA

Circulating or cell-free DNA

cfDI

Cell-free DNA integrity

CTC

Circulating tumour cells

CTCpos-MBC

Circulating tumour cells positive metastatic breast cancer

CTCneg-MBC

Circulating tumour cells negative metastatic breast cancer

HR

Hazard ratio

MBC

Metastatic breast cancer

PBC

Primary breast cancer

PFS

Progression-free survival

OS

Overall survival

Notes

Acknowledgments

We thank the study participants and all our colleagues who helped us with patient recruitment, blood collection and processing. This study was funded and supported by the Dietmar-Hopp Foundation, the University Hospital of Heidelberg, the Helmholtz Society, and the German Cancer Research Center (DKFZ), Heidelberg, Germany.

Supplementary material

10549_2014_2946_MOESM1_ESM.pdf (343 kb)
Supplementary Material (PDF 342 kb)

References

  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90PubMedCrossRefGoogle Scholar
  2. 2.
    Weigelt B, Peterse JL, van ’t Veer LJ (2005) Breast cancer metastasis: markers and models. Nat Rev Cancer 5:591–602PubMedCrossRefGoogle Scholar
  3. 3.
    Cardoso F, Castiglione M, Group EGW (2009) Locally recurrent or metastatic breast cancer: ESMO clinical recommendations for diagnosis, treatment and follow-up. Ann Oncol 20(Suppl 4):15–18PubMedGoogle Scholar
  4. 4.
    Hanash SM, Baik CS, Kallioniemi O (2011) Emerging molecular biomarkers-blood-based strategies to detect and monitor cancer. Nat Rev Clin Oncol 8:142–150PubMedCrossRefGoogle Scholar
  5. 5.
    Lumachi F, Brandes AA, Ermani M, Bruno G, Boccagni P (2000) Sensitivity of serum tumor markers CEA and CA 15–3 in breast cancer recurrences and correlation with different prognostic factors. Anticancer Res 20:4751–4755PubMedGoogle Scholar
  6. 6.
    Pantel K, Alix-Panabiéres C (2010) Circulating tumour cells in cancer patients: challenges and perspectives. Trends Mol Med 16:398–406PubMedCrossRefGoogle Scholar
  7. 7.
    Ring AE, Zabaglo L, Ormerod MG, Smith IE, Dowsett M (2005) Detection of circulating epithelial cells in the blood of patients with breast cancer: comparison of three techniques. Br J Cancer 92:906–912PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Königsberg R, Obermayr E, Bises G, Pfeiler G, Gneist M, Wrba F et al (2011) Detection of EpCAM positive and negative circulating tumor cells in metastatic breast cancer patients. Acta Oncol 50:700–710PubMedCrossRefGoogle Scholar
  9. 9.
    Madhavan D, Zucknick M, Wallwiener M, Cuk K, Modugno C, Scharpff M et al (2012) Circulating miRNAs as surrogate markers for circulating tumor cells and prognostic markers in metastatic breast cancer. Clin Cancer Res 18:5972–5982PubMedCrossRefGoogle Scholar
  10. 10.
    Cuk K, Zucknick M, Heil J, Madhavan D, Schott S, Turchinovich A et al (2013) Circulating microRNAs in plasma as early detection markers for breast cancer. Int J Cancer 132:1602–1612PubMedCrossRefGoogle Scholar
  11. 11.
    Cuk K, Zucknick M, Madhavan D, Schott S, Golatta M, Heil J et al (2013) Plasma MicroRNA panel for minimally invasive detection of breast cancer. PLoS One 8(10):e76729PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Umetani N, Giuliano AE, Hiramatsu SH, Amersi F, Nakagawa T, Martino S et al (2006) Prediction of breast tumor progression by integrity of free circulating DNA in serum. J Clin Oncol 24:4270–4276PubMedCrossRefGoogle Scholar
  13. 13.
    Steinman CR (1975) Free DNA in serum and plasma from normal adults. J Clin Investig 56:512–515PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    De Mattos-Arruda L, Cortes J, Santarpia L, Vivancos A, Tabernero J, Reis-Filho JS et al (2013) Circulating tumour cells and cell-free DNA as tools for managing breast cancer. Nat Rev Clin Oncol 10:377–389PubMedCrossRefGoogle Scholar
  15. 15.
    Anker P, Lefort F, Vasioukhin V, Lyautey J, Lederrey C, Chen XQ et al (1997) K-ras mutations are found in DNA extracted from the plasma of patients with colorectal cancer. Gastroenterology 112:1114–1120PubMedCrossRefGoogle Scholar
  16. 16.
    Sanchez-Cespedes M, Monzo M, Rosell R, Pifarre A, Calvo R, Lopez-Cabrerizo MP et al (1998) Detection of chromosome 3p alterations in serum DNA of non-small-cell lung cancer patients. Ann Oncol 9:113–116PubMedCrossRefGoogle Scholar
  17. 17.
    Balgkouranidou I, Karayiannakis A, Matthaios D, Bolanaki H, Tripsianis G, Tentes AA et al (2013) Assessment of SOX17 DNA methylation in cell free DNA from patients with operable gastric cancer. Association with prognostic variables and survival. Clin Chem Lab Med 51:1505–1510PubMedCrossRefGoogle Scholar
  18. 18.
    Wang BG, Huang HY, Chen YC, Bristow RE, Kassauei K, Cheng CC et al (2003) Increased plasma DNA integrity in cancer patients. Cancer Res 63:3966–3968PubMedGoogle Scholar
  19. 19.
    Jiang WW, Zahurak M, Goldenberg D, Milman Y, Park HL, Westra WH et al (2006) Increased plasma DNA integrity index in head and neck cancer patients. Int J Cancer 119:2673–2676PubMedCrossRefGoogle Scholar
  20. 20.
    Umetani N, Kim J, Hiramatsu S, Reber HA, Hines OJ, Bilchik AJ et al (2006) Increased integrity of free circulating DNA in sera of patients with colorectal or periampullary cancer: direct quantitative PCR for ALU repeats. Clin Chem 52:1062–1069PubMedCrossRefGoogle Scholar
  21. 21.
    Hauser S, Zahalka T, Ellinger J, Fechner G, Heukamp LC, Vonr A et al (2010) Cell-free circulating DNA: diagnostic value in patients with renal cell cancer. Anticancer Res 30:2785–2789PubMedGoogle Scholar
  22. 22.
    Deligezer U, Eralp Y, Akisik EE, Akisik EZ, Saip P, Topuz E et al (2008) Size distribution of circulating cell-free DNA in sera of breast cancer patients in the course of adjuvant chemotherapy. Clin Chem Lab Med 46:311–317PubMedCrossRefGoogle Scholar
  23. 23.
    Jahr S, Hentze H, Englisch S, Hardt D, Fackelmayer FO, Hesch RD et al (2001) DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res 61:1659–1665PubMedGoogle Scholar
  24. 24.
    Giacona MB, Ruben GC, Iczkowski KA, Roos TB, Porter DM, Sorenson GD (1998) Cell-free DNA in human blood plasma: length measurements in patients with pancreatic cancer and healthy controls. Pancreas 17:89–97PubMedCrossRefGoogle Scholar
  25. 25.
    Wu TL, Zhang D, Chia JH, Tsao K, Sun CF, Wu JT (2002) Cell-free DNA: measurement in various carcinomas and establishment of normal reference range. Clin Chim Acta 321:77–87PubMedCrossRefGoogle Scholar
  26. 26.
    Mouliere F, Robert B, Arnau Peyrotte E, Del Rio M, Ychou M, Molina F et al (2011) High fragmentation characterizes tumour-derived circulating DNA. PLoS One 6(9):e23418PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JAM (2007) Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 35:W71–W74PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J (2005) Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110:462–467PubMedCrossRefGoogle Scholar
  29. 29.
    Price AL, Eskin E, Pevzner PA (2004) Whole-genome analysis of Alu repeat elements reveals complex evolutionary history. Genome Res 14:2245–2252PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Diehl F, Schmidt K, Choti M, Romans K, Goodman S (2008) Circulating mutant DNA to assess tumor dynamics. Nat Med 14:985–990PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Markham NR, Zuker M (2005) DINAMelt web server for nucleic acid melting prediction. Nucleic Acids Res 33(Web Server issue):W577–W581PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Team RDC (2010) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org.
  33. 33.
    Gerds TA, Schumacher M (2007) Efron-type measures of prediction error for survival analysis. Biometrics 63:1283–1287PubMedCrossRefGoogle Scholar
  34. 34.
    Umetani N, Hirmatsu S, Hoon DSB (2006) Higher amount of free circulating DNA in serum than in plasma is not mainly caused by contaminated extraneous DNA during separation. Ann N Y Acad Sci 1075(1):299–307PubMedCrossRefGoogle Scholar
  35. 35.
    Wang K, Yuan Y, Cho JH, McClarty S, Baxter D, Galas DJ (2012) Comparing the MicroRNA spectrum between serum and plasma. PLoS One 7(7):e41561PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Cao G, Pei W, Lan J, Stetler RA, Luo Y, Nagayama T et al (2001) Caspase-activated DNase/DNA fragmentation factor 40 mediates apoptotic DNA fragmentation in transient cerebral ischemia and in neuronal cultures. J Neurosci 21(13):4678–4690PubMedGoogle Scholar
  37. 37.
    Huang Q, Li F, Liu X, Li W, Shi W, Liu FF et al (2011) Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy. Nat Med 17(7):860–866PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Liu S, Edgerton SM, Moore D 2nd, Thor AD (2001) Measures of cell turnover (proliferation and apoptosis) and their association with survival in breast cancer. Clin Cancer Res 7(6):1716–1723PubMedGoogle Scholar
  39. 39.
    Srinivas P, Abraham E, Ahamed I, Madhavan M, Vijayalakshmi NR, Nair MK et al (2002) Apoptotic index: use in predicting recurrence in breast cancer patients. J Exp Clin Cancer Res 21(2):233–238PubMedGoogle Scholar
  40. 40.
    Holdenrieder S, Burges A, Reich O, Spelsberg FW, Stieber P (2008) DNA integrity in plasma and serum of patients with malignant and benign diseases. Ann N Y Acad Sci 1137:162–170PubMedCrossRefGoogle Scholar
  41. 41.
    Ellinger J, Muller SC, Wernert N, von Ruecker A, Bastian PJ (2008) Mitochondrial DNA in serum of patients with prostate cancer: a predictor of biochemical recurrence after prostatectomy. BJU Int 102:628–632PubMedCrossRefGoogle Scholar
  42. 42.
    Hauser S, Kogej M, Fechner G, Von Ruecker A, Bastian PJ, Von Pezold J et al (2012) Cell-free serum DNA in patients with bladder cancer: results of a prospective multicenter study. Anticancer Res 32:3119–3124PubMedGoogle Scholar
  43. 43.
    El Messaoudi S, Rolet F, Mouliere F, Thierry AR (2013) Circulating cell free DNA: preanalytical considerations. Clin Chim Acta 424:222–230PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Dharanija Madhavan
    • 1
    • 2
  • Markus Wallwiener
    • 3
    • 4
  • Karin Bents
    • 2
  • Manuela Zucknick
    • 5
  • Juliane Nees
    • 3
    • 4
  • Sarah Schott
    • 3
  • Katarina Cuk
    • 1
    • 2
  • Sabine Riethdorf
    • 6
  • Andreas Trumpp
    • 7
    • 8
  • Klaus Pantel
    • 6
  • Christof Sohn
    • 3
  • Andreas Schneeweiss
    • 3
    • 4
  • Harald Surowy
    • 1
    • 2
    Email author
  • Barbara Burwinkel
    • 1
    • 2
  1. 1.Molecular Epidemiology, C080German Cancer Research Center (DKFZ)HeidelbergGermany
  2. 2.Molecular Biology of Breast Cancer, Department of Gynecology and ObstetricsUniversity of HeidelbergHeidelbergGermany
  3. 3.Department of Gynecology and ObstetricsUniversity of HeidelbergHeidelbergGermany
  4. 4.National Center for Tumor DiseasesUniversity of HeidelbergHeidelbergGermany
  5. 5.Division of BiostatisticsGerman Cancer Research Center (DKFZ)HeidelbergGermany
  6. 6.Department of Tumor BiologyUniversity Hospital Hamburg-EppendorfHamburgGermany
  7. 7.Hi-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine, GmbHHeidelbergGermany
  8. 8.Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany

Personalised recommendations