Advertisement

Breast Cancer Research and Treatment

, Volume 145, Issue 1, pp 91–100 | Cite as

Diagnostic performance of breast-specific gamma imaging in the assessment of residual tumor after neoadjuvant chemotherapy in breast cancer patients

  • Hyo Sang Lee
  • Beom Seok Ko
  • Sei Hyun Ahn
  • Byung Ho Son
  • Jong Won Lee
  • Hee Jeong Kim
  • Jong Han Yu
  • Sung-Bae Kim
  • Kyung Hae Jung
  • Jin-Hee Ahn
  • Joo Hee Cha
  • Hak Hee Kim
  • Hee Jin Lee
  • In-Hye Song
  • Gyungyub Gong
  • Seol-Hoon Park
  • Jong Jin Lee
  • Dae Hyuk MoonEmail author
Clinical trial

Abstract

To evaluate the diagnostic performance of breast-specific gamma imaging (BSGI) in the assessment of residual tumor after neoadjuvant chemotherapy (NAC) in breast cancer patients, female breast cancer patients who underwent NAC, preoperative 99mTc-sestamibi BSGI, and subsequent definitive breast surgery were enrolled retrospectively. The accuracy of BSGI in the assessment of residual tumor presence and residual tumor size was evaluated and compared to that of magnetic resonance imaging (MRI) using pathology results as the gold standard. The sensitivity and specificity of BSGI for residual tumor detection in 122 enrolled patients were 74.0 and 72.2 %, respectively, and were comparable to those of MRI (81.7 and 72.2 %; P > 0.100). The residual tumor size was significantly underestimated by BSGI in the luminal subtype (P = 0.008) and by MRI in the luminal (P < 0.001) and HER2 subtypes (P = 0.032), with a significantly lesser degree of underestimation by BSGI than MRI in both subtypes. In the triple-negative subtype, both BSGI and MRI generated accurate tumor size measurements. The residual cellularity of triple-negative tumors was significantly higher than that of the non-triple-negative tumors (P = 0.017). The diagnostic performance of BSGI in the assessment of residual tumor is comparable to that of MRI in breast cancer patients. The assessment of residual tumor extent by BSGI depends on the molecular subtype, but BSGI may be more accurate than MRI. Underestimation of tumor size in the luminal and/or HER2 subtypes by BSGI and MRI may be due to low-residual cellularity.

Keywords

Breast-specific gamma imaging Breast cancer Magnetic resonance imaging Neoadjuvant chemotherapy Residual tumor size 

Notes

Acknowledgments

This study was supported by a grant of the Korea Healthcare Technology R&D Project, Ministry of Health and Welfare, Republic of Korea (HI06C0868).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

Experiments performed in this study comply with the current laws of the Republic of Korea.

References

  1. 1.
    Wolmark N, Wang J, Mamounas E, Bryant J, Fisher B (2001) Preoperative chemotherapy in patients with operable breast cancer: nine-year results from National Surgical Adjuvant Breast and Bowel Project B-18. J Natl Cancer Inst Monogr 30:96–102PubMedCrossRefGoogle Scholar
  2. 2.
    Balu-Maestro C, Chapellier C, Bleuse A, Chanalet I, Chauvel C, Largillier R (2002) Imaging in evaluation of response to neoadjuvant breast cancer treatment benefits of MRI. Breast Cancer Res Treat 72(2):145–152PubMedCrossRefGoogle Scholar
  3. 3.
    Weatherall PT, Evans GF, Metzger GJ, Saborrian MH, Leitch AM (2001) MRI vs. histologic measurement of breast cancer following chemotherapy: comparison with X-ray mammography and palpation. J Magn Reson Imaging 13(6):868–875. doi: 10.1002/jmri.1124 PubMedCrossRefGoogle Scholar
  4. 4.
    Segara D, Krop IE, Garber JE, Winer E, Harris L, Bellon JR, Birdwell R, Lester S, Lipsitz S, Iglehart JD, Golshan M (2007) Does MRI predict pathologic tumor response in women with breast cancer undergoing preoperative chemotherapy? J Surg Oncol 96(6):474–480. doi: 10.1002/jso.20856 PubMedCrossRefGoogle Scholar
  5. 5.
    Chagpar AB, Middleton LP, Sahin AA, Dempsey P, Buzdar AU, Mirza AN, Ames FC, Babiera GV, Feig BW, Hunt KK, Kuerer HM, Meric-Bernstam F, Ross MI, Singletary SE (2006) Accuracy of physical examination, ultrasonography, and mammography in predicting residual pathologic tumor size in patients treated with neoadjuvant chemotherapy. Ann Surg 243(2):257–264. doi: 10.1097/01.sla.0000197714.14318.6f00000658-200602000-00016 PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Denis F, Desbiez-Bourcier AV, Chapiron C, Arbion F, Body G, Brunereau L (2004) Contrast enhanced magnetic resonance imaging underestimates residual disease following neoadjuvant docetaxel based chemotherapy for breast cancer. Eur J Surg Oncol 30(10):1069–1076. doi: 10.1016/j.ejso.2004.07.024 PubMedCrossRefGoogle Scholar
  7. 7.
    Chen JH, Feig B, Agrawal G, Yu H, Carpenter PM, Mehta RS, Nalcioglu O, Su MY (2008) MRI evaluation of pathologically complete response and residual tumors in breast cancer after neoadjuvant chemotherapy. Cancer 112(1):17–26. doi: 10.1002/cncr.23130 PubMedCrossRefGoogle Scholar
  8. 8.
    Moon HG, Han W, Lee JW, Ko E, Kim EK, Yu JH, Kang SY, Moon WK, Cho N, Park IA, Oh DY, Han SW, Im SA, Noh DY (2009) Age and HER2 expression status affect MRI accuracy in predicting residual tumor extent after neo-adjuvant systemic treatment. Ann Oncol 20(4):636–641. doi: 10.1093/annonc/mdn683 PubMedCrossRefGoogle Scholar
  9. 9.
    Loo CE, Straver ME, Rodenhuis S, Muller SH, Wesseling J, Vrancken Peeters MJ, Gilhuijs KG (2011) Magnetic resonance imaging response monitoring of breast cancer during neoadjuvant chemotherapy: relevance of breast cancer subtype. J Clin Oncol 29(6):660–666. doi: 10.1200/JCO.2010.31.1258JCO.2010.31.1258 PubMedCrossRefGoogle Scholar
  10. 10.
    McGuire KP, Toro-Burguete J, Dang H, Young J, Soran A, Zuley M, Bhargava R, Bonaventura M, Johnson R, Ahrendt G (2011) MRI staging after neoadjuvant chemotherapy for breast cancer: does tumor biology affect accuracy? Ann Surg Oncol 18(11):3149–3154. doi: 10.1245/s10434-011-1912-z PubMedCrossRefGoogle Scholar
  11. 11.
    Brem RF, Schoonjans JM, Kieper DA, Majewski S, Goodman S, Civelek C (2002) High-resolution scintimammography: a pilot study. J Nucl Med 43(7):909–915PubMedGoogle Scholar
  12. 12.
    Spanu A, Chessa F, Meloni GB, Sanna D, Cottu P, Manca A, Nuvoli S, Madeddu G (2008) The role of planar scintimammography with high-resolution dedicated breast camera in the diagnosis of primary breast cancer. Clin Nucl Med 33(11):739–742. doi: 10.1097/RLU.0b013e318187ee7500003072-200811000-00001 PubMedCrossRefGoogle Scholar
  13. 13.
    Weigert JM, Bertrand ML, Lanzkowsky L, Stern LH, Kieper DA (2012) Results of a multicenter patient registry to determine the clinical impact of breast-specific gamma imaging, a molecular breast imaging technique. AJR 198(1):W69–W75. doi: 10.2214/AJR.10.6105198/1/W69 PubMedCrossRefGoogle Scholar
  14. 14.
    Park J, Lee A, Jung K, Choi S, Lee S, Bae S (2013) Diagnostic performance of breast-specific gamma imaging (BSGI) for breast cancer: usefulness of dual-phase imaging with 99 mTc-sestamibi. Nucl Med Mol Imaging 47(1):18–26. doi: 10.1007/s13139-012-0176-2 CrossRefGoogle Scholar
  15. 15.
    Yoo C, Ahn JH, Jung KH, Kim SB, Kim HH, Shin HJ, Ahn SH, Son BH, Gong G (2012) Impact of immunohistochemistry-based molecular subtype on chemosensitivity and survival in patients with breast cancer following neoadjuvant chemotherapy. J Breast Cancer 15(2):203–210. doi: 10.4048/jbc.2012.15.2.203 PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Shin HJ, Baek HM, Ahn JH, Baek S, Kim H, Cha JH, Kim HH (2012) Prediction of pathologic response to neoadjuvant chemotherapy in patients with breast cancer using diffusion-weighted imaging and MRS. NMR Biomed 25(12):1349–1359. doi: 10.1002/nbm.2807 PubMedCrossRefGoogle Scholar
  17. 17.
    Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thurlimann B, Senn HJ (2011) Strategies for subtypes–dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol 22(8):1736–1747. doi: 10.1093/annonc/mdr304 PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Goldsmith SJ, Parsons W, Guiberteau MJ, Stern LH, Lanzkowsky L, Weigert J, Heston TF, Jones E, Buscombe J, Stabin MG, Society of Nuclear M (2010) SNM practice guideline for breast scintigraphy with breast-specific gamma-cameras 1.0. J Nucl Med Technol 38(4):219–224. doi: 10.2967/jnmt.110.082271 PubMedCrossRefGoogle Scholar
  19. 19.
    Jin S, Kim SB, Ahn JH, Jung KH, Ahn SH, Son BH, Lee JW, Gong G, Kim HO, Moon DH (2013) 18 F-fluorodeoxyglucose uptake predicts pathological complete response after neoadjuvant chemotherapy for breast cancer: a retrospective cohort study. J Surg Oncol 107(2):180–187. doi: 10.1002/jso.23255 PubMedCrossRefGoogle Scholar
  20. 20.
    Kurosumi M (2004) Significance of histopathological evaluation in primary therapy for breast cancer—recent trends in primary modality with pathological complete response (pCR) as endpoint. Breast Cancer 11(2):139–147PubMedCrossRefGoogle Scholar
  21. 21.
    Symmans WF, Peintinger F, Hatzis C, Rajan R, Kuerer H, Valero V, Assad L, Poniecka A, Hennessy B, Green M, Buzdar AU, Singletary SE, Hortobagyi GN, Pusztai L (2007) Measurement of residual breast cancer burden to predict survival after neoadjuvant chemotherapy. J Clin Oncol 25(28):4414–4422. doi: 10.1200/JCO.2007.10.6823 PubMedCrossRefGoogle Scholar
  22. 22.
    Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1(8476):307–310PubMedCrossRefGoogle Scholar
  23. 23.
    Schillaci O, Buscombe JR (2004) Breast scintigraphy today: indications and limitations. Eur J Nucl Med Mol Imaging 31(Suppl 1):S35–S45. doi: 10.1007/s00259-004-1525-x PubMedCrossRefGoogle Scholar
  24. 24.
    Larson M, Larson M, Li Z, Larson M, Li Z, Hall CL, Jensen E, McAllister DM, Kalyanaraman B, Zhao M (2009) Physiological fluctuation of (99m)Tc-sestamibi uptake in normal mammary glands: a systematic investigation in female rats. Acta Radiol 50(9):975–978. doi: 10.3109/02841850903134127 PubMedCrossRefGoogle Scholar
  25. 25.
    Ogston KN, Miller ID, Payne S, Hutcheon AW, Sarkar TK, Smith I, Schofield A, Heys SD (2003) A new histological grading system to assess response of breast cancers to primary chemotherapy: prognostic significance and survival. Breast 12(5):320–327PubMedCrossRefGoogle Scholar
  26. 26.
    Veronesi U, Bonadonna G, Zurrida S, Galimberti V, Greco M, Brambilla C, Luini A, Andreola S, Rilke F, Raselli R et al (1995) Conservation surgery after primary chemotherapy in large carcinomas of the breast. Ann Surg 222(5):612–618PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Turnbull LW (2009) Dynamic contrast-enhanced MRI in the diagnosis and management of breast cancer. NMR Biomed 22(1):28–39. doi: 10.1002/nbm.1273 PubMedCrossRefGoogle Scholar
  28. 28.
    Tiling R, Stephan K, Sommer H, Shabani N, Linke R, Hahn K (2004) Tissue-specific effects on uptake of 99mTc-sestamibi by breast lesions: a targeted analysis of false scintigraphic diagnoses. J Nucl Med 45(11):1822–1828PubMedGoogle Scholar
  29. 29.
    Li SP, Padhani AR, Taylor NJ, Beresford MJ, Ah-See ML, Stirling JJ, d’Arcy JA, Collins DJ, Makris A (2011) Vascular characterisation of triple negative breast carcinomas using dynamic MRI. Eur Radiol 21(7):1364–1373. doi: 10.1007/s00330-011-2061-2 PubMedCrossRefGoogle Scholar
  30. 30.
    Keto JL, Kirstein L, Sanchez DP, Fulop T, McPartland L, Cohen I, Boolbol SK (2012) MRI versus breast-specific gamma imaging (BSGI) in newly diagnosed ductal cell carcinoma-in situ: a prospective head-to-head trial. Ann Surg Oncol 19(1):249–252. doi: 10.1245/s10434-011-1848-3 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Hyo Sang Lee
    • 1
  • Beom Seok Ko
    • 2
  • Sei Hyun Ahn
    • 2
  • Byung Ho Son
    • 2
  • Jong Won Lee
    • 2
  • Hee Jeong Kim
    • 2
  • Jong Han Yu
    • 2
  • Sung-Bae Kim
    • 3
  • Kyung Hae Jung
    • 3
  • Jin-Hee Ahn
    • 3
  • Joo Hee Cha
    • 4
  • Hak Hee Kim
    • 4
  • Hee Jin Lee
    • 5
  • In-Hye Song
    • 5
  • Gyungyub Gong
    • 5
  • Seol-Hoon Park
    • 6
  • Jong Jin Lee
    • 1
  • Dae Hyuk Moon
    • 1
    Email author
  1. 1.Department of Nuclear Medicine, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulRepublic of Korea
  2. 2.Department of Surgery, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulRepublic of Korea
  3. 3.Department of Oncology, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulRepublic of Korea
  4. 4.Department of Radiology, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulRepublic of Korea
  5. 5.Department of Pathology, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulRepublic of Korea
  6. 6.Department of Nuclear MedicineUlsan University HospitalUlsanRepublic of Korea

Personalised recommendations