Breast Cancer Research and Treatment

, Volume 145, Issue 1, pp 5–22 | Cite as

Nicotine promotes apoptosis resistance of breast cancer cells and enrichment of side population cells with cancer stem cell-like properties via a signaling cascade involving galectin-3, α9 nicotinic acetylcholine receptor and STAT3

  • Prasun Guha
  • Gargi Bandyopadhyaya
  • Swamy K. Polumuri
  • Saranya Chumsri
  • Padmaja Gade
  • Dhananjaya V. Kalvakolanu
  • Hafiz Ahmed
Preclinical Study

Abstract

Nicotine, a main addictive compound in tobacco smoke, has been linked to promotion and progression of lung, head and neck, pancreatic, and breast cancers, but the detailed mechanisms of cancer progression remain elusive. Here, we show that nicotine induces the expression of galectin-3 (an anti-apoptotic β-galactoside-binding lectin) in breast cancer cell line and in primary tumors from breast cancer patients. Nicotine-induced up regulation of galectin-3 is due to an increased expression of α9 isoform of nicotinic acetylcholine receptor (α9nAChR), which activates transcription factor STAT3 that in turn, physically binds to galectin-3 (LGALS3) promoter and induces transcription of galectin-3. Intracellular galectin-3 increased mitochondrial integrity and suppressed chemotherapeutic-induced apoptosis of breast cancer cell. Moreover, nicotine-induced enrichment of side population cells with cancer stem cell-like properties was modulated by galectin-3 expression and could be significantly reduced by transient knock down of LGALS3 and its upstream signaling molecules STAT3 and α9nAChR. Thus, galectin-3 or its upstream signaling molecule STAT3 or α9nAChR could be a potential target to prevent nicotine-induced chemoresistance in breast cancer.

Keywords

Nicotine Apoptosis Metastatic cancer Stem cell Galectin-3 

Abbreviations

α9nAChR

α9 isoform of nicotinic acetylcholine receptor

LGALS3

Galectin-3

gal3

galectin-3

STS

Staurosporine

SP

Side population

Notes

Acknowledgments

We are grateful to Dr. Aditi Banerjee for her help on the scratch-wound healing assay. This study was supported by the University of Maryland Start-up fund and in part by the NIH Grants RO3CA133935 and R41CA141970 to H.A; and R01CA105005 and Cigarette Restitution Funds from the University of Maryland Greenebaum Cancer Center to D.V.K.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Adhikari B, Kahende J, Malarcher A, Pechacek T, Tong V (2008) Smoking-attributable mortality, years of potential life lost, and productivity losses—United States, 2000–2004. Morbidity and Mortality Weekly Rep 2008, 57:1226–1228 Google Scholar
  2. 2.
    Singh S, Pillai S, Chellappan S (2011) Nicotinic acetylcholine receptor signaling in tumor growth and metastasis. J Oncol 2011:456743PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Nishioka T, Kim HS, Luo LY, Huang Y, Guo J, Chen CY (2011) Sensitization of epithelial growth factor receptors by nicotine exposure to promote breast cancer cell growth. Breast Cancer Res 13:R113PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Momi N, Ponnusamy MP, Kaur S, Rachagani S, Kunigal SS, Chellappan S, Ouellette MM, Batra SK (2013) Nicotine/cigarette smoke promotes metastasis of pancreatic cancer through α9 nAChR-mediated MUC4 upregulation. Oncogene 32:1384–1395PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Dasgupta P, Kinkade R, Joshi B, Decook C, Haura E, Chellappan S (2006) Nicotine inhibits apoptosis induced by chemotherapeutic drugs by up-regulating XIAP and surviving. Proc Natl Acad Sci USA 103:6332–6337PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Shih YL, Liu HC, Chen CS, Hsu CH, Pan MH, Chang HW, Chen FC, Ho CT, Yang YY, Ho YS (2010) Combination treatment with luteolin and quercetin enhances antiproliferative effects in nicotine-treated MDA-MB-231 cells by down regulating nicotinic acetylcholine receptors. J Agric Food Chem 58:235–241PubMedCrossRefGoogle Scholar
  7. 7.
    Levy DE, Darnell JE Jr (2002) Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol 3:651–662PubMedCrossRefGoogle Scholar
  8. 8.
    Takemoto S, Ushijima K, Kawano K, Yamaguchi T, Terada A, Fujiyoshi N, Nishio S, Tsuda N, Ijichi M, Kakuma T et al (2009) Expression of activated signal transducer and activator of transcription-3 predicts poor prognosis in cervical squamous-cell carcinoma. Br J Cancer 101:967–972PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Ryu K, Choy E, Yang C, Susa M, Hornicek FJ, Mankin H, Duan Z (2010) Activation of signal transducer and activator of transcription 3 (Stat3) pathway in osteosarcoma cells and overexpression of phosphorylated-Stat3 correlates with poor prognosis. J Orthop Res 28:971–980PubMedGoogle Scholar
  10. 10.
    Chen RJ, Ho YS, Guo HR, Wang YJ (2010) Long-term nicotine exposure-induced chemoresistance is mediated by activation of Stat3 and downregulation of ERK1/2 via nAChR and beta-adrenoreceptors in human bladder cancer cells. Toxicol Sci 115:118–130PubMedCrossRefGoogle Scholar
  11. 11.
    Macha MA, Matta A, Chauhan SS, Siu KW, Ralhan R (2011) Guggulsterone (GS) inhibits ST/Nicotine modulated NF-kB and STAT3 pathways in oral cancer SCC4 cells. Carcinogenesis 32:368–380PubMedCrossRefGoogle Scholar
  12. 12.
    Xu TY, Guo LL, Wang P, Song J, Le YY, Viollet B, Miao CY (2012) Chronic exposure of nicotine enhances insulin sensitivity though α7 nicotinic acetylcholine receptor-STAT3 pathway. PLoS ONE 7:e51217PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Liu FT, Rabinovich GA (2005) Galectins as modulators of tumor progression. Nat Rev Cancer 5:29–41PubMedCrossRefGoogle Scholar
  14. 14.
    Radosavljevic G, Volarevic V, Jovanovic I, Milovanovic M, Pejnovic N, Arsenijevic N, Hsu DK, Lukic ML (2012) The roles of galectin-3 in autoimmunity and tumor progression. Immunol Res 52:100–110PubMedCrossRefGoogle Scholar
  15. 15.
    Rabinovich GA, van Kooyk Y, Cobb BA (2012) Glycobiology of immune responses. Ann NY Acad Sci 1253:1–15PubMedCrossRefGoogle Scholar
  16. 16.
    Guha P, Kaptan E, Bandypadhyaya G, Kaczanowska S, Davila E, Thompson K, Martin SS, Kalvakolanu DK, Vasta GR, Ahmed H (2013) Cod glycopeptides with picomolar affinity to galectin-3 suppresses T-cell apoptosis and prostate cancer metastasis. Proc Natl Acad Sci USA 110:5052–5057PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Hsu DK, Dowling CA, Jeng KC, Chen JT, Yang RY, Liu FT (1999) Galectin-3 expression is induced cirrhotic liver and hepatocellular carcinoma. Int J Cancer 81:519–526PubMedCrossRefGoogle Scholar
  18. 18.
    Miyazaki J, Hokari R, Kato S, Tsuzuki Y, Kawaguchi A, Nagao S, Itoh K, Miura S (2002) Increased expression of Galectin-3 in primary gastric cancer and the metastatic lymph nodes. Oncol Rep 9:1307–1312PubMedGoogle Scholar
  19. 19.
    Yoshimura A, Gemma A, Hosoya Y, Komaki E, Hosomi Y, Okano T, Takenaka K, Matuda K, Seike M, Uematsu K et al (2003) Increased expression the LGALS3 (galectin 3) gene in human non-small-cell lung cancer. Genes Chromosomes Cancer 37:159–164PubMedCrossRefGoogle Scholar
  20. 20.
    Saussez S, Decaestecker C, Mahillon V, Cludts S, Capouillez A, Chevalier D, Vet HK, André S, Toubeau G, Leroy X et al (2008) Galectin-3 up-regulation during tumor progression in head and neck cancer. Laryngoscope 118:1583–1590PubMedCrossRefGoogle Scholar
  21. 21.
    Lotz MM, Andrews CW Jr, Korzeliu CA, Lee EC, Steele GD Jr, Clarke A, Mercurio AM (1993) Decreased expression of Mac-2 (carbohydrate binding protein 35) and loss of its localization are associated with the neoplastic progression of colon carcinoma. Proc Natl Acad Sci USA 90:3466–3470PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Honjo Y, Inohara H, Akahani S, Yoshii T, Takenaka Y, Yoshida J, Hattori K, Tomiyama Y, Raz A, Kubo T (2000) Expression of cytoplasmic galectin-3 as a prognostic marker in tongue carcinoma. Clin Cancer Res 6:4635–4640PubMedGoogle Scholar
  23. 23.
    Nakahara S, Oka N, Raz A (2005) On the role of galectin-3 in cancer apoptosis. Apoptosis 10:267–275PubMedCrossRefGoogle Scholar
  24. 24.
    Wang Y, Nangia-Makker P, Tait L, Balan V, Hogan V, Pienta KJ, Raz A (2009) Regulation of prostate cancer progression by galectin-3. Am J Pathol 174:1515–1523PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Burlacu A (2003) Regulation of apoptosis by by Bcl-2 family proteins. J Cell Mol Med 7:249–257PubMedCrossRefGoogle Scholar
  26. 26.
    Glinsky GV, Price JE, Glinsky VV, Mossine VV, Kiriakova G, Metcalf JB (1996) Inhibition of human breast cancer metastasis in nude mice by synthetic glycoamines. Cancer Res 56:5319–5324PubMedGoogle Scholar
  27. 27.
    Johnson KD, Glinskii OV, Mossine VV, Turk JR, Mawhinney TP, Anthony DC, Henry CJ, Huxley VH, Glinsky GV, Pienta KJ, Raz A, Glinsky VV (2007) Galectin-3 as a potential therapeutic target in tumors arising from malignant endothelia. Neoplasia 9:662–670PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Glinsky VV, Kiriakova G, Glinskii OV, Mossine VV, Mawhinney TP, Turk JR, Glinskii AB, Huxley VH, Price JE, Glinsky GV (2009) Synthetic galectin-3 inhibitor increases metastatic cancer cell sensitivity to taxol-induced apoptosis in vitro and in vivo. Neoplasia 11:901–909PubMedCentralPubMedGoogle Scholar
  29. 29.
    Glinskii OV, Sud S, Mossine VV, Mawhinney TP, Anthony DC, Glinsky GV, Pienta KJ, Glinsky VV (2012) Inhibition of Prostate Cancer Bone Metastasis by Synthetic TF Antigen Mimic/Galectin-3 Inhibitor Lactulose-l-Leucine. Neoplasia 14:65–73PubMedCentralPubMedGoogle Scholar
  30. 30.
    Sun P, Nallar SC, Kalakonda S, Lindner DJ, Martin SS, Kalvakolanu DV (2009) GRIM-19 inhibits v-Src-induced cell motility by interfering with cytoskeletal restructuring. Oncogene 28:1339–1347PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Ahmed H, Cappello F, Rodolico V, Vasta GR (2009) Evidence of heavy methylation in the galectin-3 promoter in early stages of prostate-adenocarcinoma: development and validation of a methylated marker for early diagnosis of prostate cancer. Transl Oncol 2:146–156PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Banerjee A, Lang JY, Hung MC, Sengupta K, Banerjee SK, Baksi K, Banerjee DK (2011) Unfolded protein response is required in nu/nu mice microvasculature for treating breast tumor with tunicamycin. J Biol Chem 286:29127–29138PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Sierra J, Villagra A, Paredes R, Cruzat F, Gutierrez S, Javed A, Arriagada G, Olate J, Imschenetzky M, Van Wijnen AJ et al (2003) Regulation of bone-specific osteocalcin gene by p300 requires Runx2/Cbfa1and the vitamin D3 receptor but not p300 intrinsic histone acetyltransferase activity. Mol Cell Biol 23:3339–3351PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Guo J, Ibaragi S, Zhu T, Luo LY, Hu GF, Huppi PS, Chen CY (2008) Nicotine promotes mammary tumor migration via a signaling cascade involving PKC and ccd42. Cancer Res 68:8473–8481PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Kondo T, Setoguchi T, Taga T (2004) Persistence of a small subpopulation of cancer-stem like cells in the C6 glioma cell line. Proc Natl Acad Sci USA 101:781–786PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Telford WG, Bradford J, Godfrey W, Robey RW, Bates SE (2007) Side population analysis using a violet-excited cell-permeable DNA binding dye. Stem Cells 25:1029–1036PubMedCrossRefGoogle Scholar
  37. 37.
    Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, Wicha MS (2003) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17:1253–1270PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Dasgupta P, Rizwani W, Pillai S, Kinkade R, Kovacs M, Rastogi S, Banerjee S, Carless M, Kim E, Coppola D et al (2009) Nicotine induces cell proliferation, invasion and epithelial-mesenchymal transition in a variety of human cancer cell line. Int J Cancer 124:36–45PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Hung CS, Peng YJ, Wei PL, Lee CH, Su HY, Ho YS, Lin SY, Wu CH, Chang YJ (2011) The alpha9 nicotinic acetylcholine receptor is the key mediator in nicotine-enhanced cancer metastasis in breast cancer cells. J Exp Clin Med 3:283–292CrossRefGoogle Scholar
  40. 40.
    Han J, Goldstein LA, Gastman BR, Rabinowich H (2006) Interrelated roles for Mcl-1and BIM in regulation of TRAIL-mediated mitochondrial apoptosis. J Biol Chem 281:10153–101163PubMedCrossRefGoogle Scholar
  41. 41.
    Zhou J, Wulfkuhle J, Zhang H, Gu P, Yang Y, Deng J, Margolick JB, Liotta LA, Petricoin E III, Zhang Y (2007) Activation of the PTEN/Mtor/STAT3 pathway in breast cancer stem-like cells in required for viability and maintenance. Proc Natl Acad Sci USA 104:16158–16163PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Patrawala L, Calhoun T, Schneider-Broussard R, Zhou J, Claypool K, Tang DG (2005) Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2− cancer cells are similarly tumorigenic. Cancer Res 65:6207–6219PubMedCrossRefGoogle Scholar
  43. 43.
    Hirschmann-Jax C, Foster AE, Wulf GG, Nuchtern JG, Jax TW, Gobel U, Goodell MA, Brenner MK (2004) A distinct “side population” of cells with druf efflux capacity in human tumor cells. Proc Natl Acad Sci USA 101:14228–14233PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ, Lagutina I, Grosveld GC, Osawa M, Nakauchi H et al (2001) The ABC transporter Bcrp1/ABCG2 is expressed in wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 7:1028–1034PubMedCrossRefGoogle Scholar
  45. 45.
    George ZC, WeiZhou Z, Mei Sun QW, Domenico C, Mena M, LiMei X, Carliann C, Jin QC, Lu-Hai W (2008) Twist is transcriptionally induced by activation of STAT3 and mediates STAT3 oncogenic function. J Biol Chem 283:14665–14673CrossRefGoogle Scholar
  46. 46.
    Ahmed H, Banerjee PP, Vasta GR (2007) Differential expression of galectins in normal, benign and malignant prostate epithelial cells: silencing of galectin-3 expression in prostate cancer by its promoter methylation. Biochem Biophys Res Commun 358:241–246PubMedCrossRefGoogle Scholar
  47. 47.
    Alkondon M, Albuquerque EX (2004) The nicotinic acetylcholine receptor subtypes and their function in the hippocampus and cerebral cortex. Prog Brain Res 145:109–120PubMedCrossRefGoogle Scholar
  48. 48.
    Arredondo J, Chernyavsky AI, Grando SA (2006) Nicotinic receptors mediate tumorigenic action of tobacco-derived nitrosamine on immortalized oral epithelial cells. Cancer Biol Ther 5:511–517PubMedCrossRefGoogle Scholar
  49. 49.
    Wu CH, Lee CH, Ho YS (2011) Nicotinic acetylcholine receptor-based blockade: application of molecular targets for cancer therapy. Clin Cancer Res 17:3533–3541PubMedCrossRefGoogle Scholar
  50. 50.
    Lee CH, Chang YC, Chen CS, Tu SH, Wang YJ, Chen LC, Chang YJ, Wei PL, Chang HW, Chang CH et al (2011) Crosstalk between nicotine and estrogen-induced estrogen receptor activation induces α9-nicotinic acetylcholine receptor expression in human breast cancer cells. Breast Cancer Res Treat 129:331–345PubMedCrossRefGoogle Scholar
  51. 51.
    Chen RJ, Ho YS, Guo HR, Wang YJ (2008) Rapid activation of Stat3 and ERK1/2 by nicotine modulates cell proliferation in human bladder cancer cells. Toxicol Sci 104:283–293PubMedCrossRefGoogle Scholar
  52. 52.
    Bowman T, Garcia R, Turkson J, Jove R (2000) STATs in oncogenesis. Oncogene 19:2474–2488PubMedCrossRefGoogle Scholar
  53. 53.
    Real PJ, Sierra A, De Juan A, Segovia JC, Lopez-Vega JM, Fernandez-Luna JL (2002) Resistance to chemotherapy via Stat3-dependent overexpression of Bcl-2 in metastatic breast cancer cells. Oncogene 21:7611–7618PubMedCrossRefGoogle Scholar
  54. 54.
    Mercer N, Ahmed H, Etcheverry SB, Vasta GR, Cortizo AM (2007) Regulation of advanced glycation end product (AGE) receptors and apoptosis by AGEs in osteoblast-like cells. Mol Cell Biochem 306:87–94PubMedCrossRefGoogle Scholar
  55. 55.
    Ahmed H (2010) Promoter methylation in prostate cancer and its application for the early detection of prostate cancer using serum and urine samples. Biomark Cancer 2:17–33PubMedCentralCrossRefGoogle Scholar
  56. 56.
    Ahmed H, Guha P, Kaptan E, Bandyopadhyaya G (2011) Galectin-3: a potential target for cancer prevention. Trends Carbohydr Res 3:13–22Google Scholar
  57. 57.
    Fukumori T, Oka N, Takenaka Y, Nangia-Makker P, Elsamman E, Kasai T, Shono M, Kanayama HO, Ellerhors J, Lotan R et al (2006) Galectin-3 regulates mitochondrial stability and antiapoptotic function in response to anticancer drug in prostate cancer. Cancer Res 66:3114–3119PubMedCrossRefGoogle Scholar
  58. 58.
    Hirata N, Sekino Y, Kanda Y (2010) Nicotine increases cancer stem cell population in MCF-7 cell. Biochem Biophys Res Commun 403:138–143PubMedCrossRefGoogle Scholar
  59. 59.
    Zhang J, Kamdar O, Le W, Rosen GD, Upadhyay D (2009) Nicotine induces resistance to chemotherapy by modulating mitochondrial signaling in lung cancer. Am J Respir Cell Mol Biol 40:135–146PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Shen T, Le W, Yee A, Kamdar O, Hwang PH, Upadhyay D (2010) Nicotine induces resistance to chemotherapy in nasal epithelial cancer. Am J Rhinol Allergy 24:73–77CrossRefGoogle Scholar
  61. 61.
    An Y, Kiang A, Lopez JP, Kuo SZ, Yu MA, Abhold EL, Chen JS, Wang-Rodriguez J, Ongkeko WM (2012) Cigarette smoke promotes drug resistance and expansion of cancer stem cell-like side population. PLoS ONE 7:e47919PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Prasun Guha
    • 1
    • 2
  • Gargi Bandyopadhyaya
    • 1
    • 2
  • Swamy K. Polumuri
    • 3
  • Saranya Chumsri
    • 4
    • 5
  • Padmaja Gade
    • 3
  • Dhananjaya V. Kalvakolanu
    • 3
    • 5
  • Hafiz Ahmed
    • 1
    • 2
    • 5
  1. 1.Department of Biochemistry and Molecular BiologyUniversity of Maryland School of MedicineBaltimoreUSA
  2. 2.Institute of Marine and Environmental TechnologyBaltimoreUSA
  3. 3.Department of Microbiology and ImmunologyUniversity of Maryland School of MedicineBaltimoreUSA
  4. 4.Department of MedicineUniversity of Maryland School of MedicineBaltimoreUSA
  5. 5.University of Maryland Greenebaum Cancer CenterBaltimoreUSA

Personalised recommendations