Advertisement

Breast Cancer Research and Treatment

, Volume 144, Issue 1, pp 93–101 | Cite as

Ex vivo Evans blue assessment of the blood brain barrier in three breast cancer brain metastasis models

  • John Do
  • Deshka Foster
  • Corinne Renier
  • Hannes Vogel
  • Sahar Rosenblum
  • Timothy C. Doyle
  • Victor Tse
  • Irene WapnirEmail author
Preclinical study

Abstract

The limited entry of anticancer drugs into the central nervous system represents a special therapeutic challenge for patients with brain metastases and is primarily due to the blood brain barrier (BBB). Albumin-bound Evans blue (EB) dye is too large to cross the BBB but can grossly stain tissue blue when the BBB is disrupted. The course of tumor development and the integrity of the BBB were studied in three preclinical breast cancer brain metastasis (BCBM) models. A luciferase-transduced braintropic clone of MDA-231 cell line was used. Nude mice were subjected to stereotactic intracerebral inoculation, mammary fat pad-derived tumor fragment implantation, or carotid artery injections. EB was injected 30 min prior to euthanasia at various timepoints for each of the BCBM model animals. Serial bioluminescent imaging demonstrated exponential tumor growth in all models. Carotid BCBM appeared as diffuse multifocal cell clusters. EB aided the localization of metastases ex vivo. Tumor implants stained blue at 7 days whereas gross staining was not evident until day 14 in the stereotactic model and day 28 for the carotid model. EB assessment of the integrity of the BBB provides useful information relevant to drug testing in preclinical BCBM models.

Keywords

Breast cancer brain metastasis Mouse brain metastasis model Blood brain barrier 

Notes

Acknowledgments

We would like to thank Dr. Sanjiv Sam Gambhir for his technical support. This study was supported in part by the Komen for the Cure grant (KG090545), Small Animal Imaging Resource NIH-NCI ICMIC P50-CA114747-02 (Gambhir, PI), and Stanford University Cancer Center NIH NCI CCSG P30-CA124435-02 (Mitchell, PI).

References

  1. 1.
    Aragon-Ching JB, Zujewski JA (2007) CNS metastasis: an old problem in a new guise. Clin Cancer Res 13:1644–1647. doi: 10.1158/1078-0432.CCR-07-0096 PubMedCrossRefGoogle Scholar
  2. 2.
    Dawood S, Gonzalez-Angulo AM (2013) Progress in the biological understanding and management of breast cancer-associated central nervous system metastases. Oncologist 18:675–684. doi: 10.1634/theoncologist.2012-0438 PubMedCrossRefGoogle Scholar
  3. 3.
    Minisini A, Moroso S, Gerratana L, Giangreco M, Iacono D, Poletto E, Guardascione M, Fontanella C, Fasola G, Puglisi F (2013) Risk factors and survival outcomes in patients with brain metastases from breast cancer. Clin Exp Metastasis. doi: 10.1007/s10585-013-9594-5 PubMedGoogle Scholar
  4. 4.
    Lin NU, Claus E, Sohl J, Razzak A, Arnaout A, Winer E (2010) Sites of distant relapse and clinical outcomes in patients with metastatic triple-negative breast cancer: high incidence of central nervous system metastases. Cancer 113:2638–2645. doi: 10.1002/cncr.23930.Sites CrossRefGoogle Scholar
  5. 5.
    Gril B, Evans L, Palmieri D, Steeg PS (2010) Translational research in brain metastasis is identifying molecular pathways that may lead to the development of new therapeutic strategies. Eur J Cancer 46:1204–1210. doi: 10.1016/j.ejca.2010.02.033 PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Olson EM, Abdel-Rasoul M, Maly J, Wu CS, Lin NU, Shapiro CL (2013) Incidence and risk of central nervous system metastases as site of first recurrence in patients with HER2-positive breast cancer treated with adjuvant trastuzumab. Ann Oncol 24:1526–1533. doi: 10.1093/annonc/mdt036 PubMedCrossRefGoogle Scholar
  7. 7.
    Hicks DG, Short SM, Prescott NL, Tarr SM, Coleman KA, Yoder BJ, Crowe JP, Choueiri TK, Dawson AE, Budd T, Tubbs RR, Casey G, Weil RJ (2006) Breast cancers with brain metastases are more likely to be estrogen receptor negative, express the basal cytokeratin CK5/6, and overexpress HER2 or EGFR. Am J Surg Pathol 30:1097–1104PubMedCrossRefGoogle Scholar
  8. 8.
    Slimane K, Andre F, Delaloge S, Dunant A, Perez A, Grenier J, Massard C, Spielmann M (2004) Risk factors for brain relapse in patients with metastatic breast cancer. Ann Oncol 15:1640–1644. doi: 10.1093/annonc/mdh432 PubMedCrossRefGoogle Scholar
  9. 9.
    Miller KD (2003) Occult central nervous system involvement in patients with metastatic breast cancer: prevalence, predictive factors and impact on overall survival. Ann Oncol 14:1072–1077. doi: 10.1093/annonc/mdg300 PubMedCrossRefGoogle Scholar
  10. 10.
    Clark GM, Sledge GW, Osborne CK, McGuire WL (1987) Survival from first recurrence: relative importance of prognostic factors in 1,015 breast cancer patients. J Clin Oncol 5:55–61PubMedGoogle Scholar
  11. 11.
    Hwang TL, Close TP, Grego JM, Brannon WL, Gonzales F (1996) Predilection of brain metastasis in gray and white matter junction and vascular border zones. Cancer 77:1551–1555. doi: 10.1002/(SICI)1097-0142(19960415)77:8<1551:AID-CNCR19>3.0.CO;2-Z PubMedCrossRefGoogle Scholar
  12. 12.
    Lin NU, Bellon JR, Winer EP (2004) CNS metastases in breast cancer. J Clin Oncol 22:3608–3617. doi: 10.1200/JCO.2004.01.175 PubMedCrossRefGoogle Scholar
  13. 13.
    Scott BJ, Kesari S (2013) Leptomeningeal metastases in breast cancer. Am J Cancer Res 3:117–126PubMedCentralPubMedGoogle Scholar
  14. 14.
    Karam I, Lesperance MF, Berrang T, Speers C, Tyldesley S, Truong PT (2013) pN0(i+) breast cancer: treatment patterns, locoregional recurrence, and survival outcomes. Int J Radiat Oncol Biol Phys 87:731–737. doi: 10.1016/j.ijrobp.2013.07.028 PubMedCrossRefGoogle Scholar
  15. 15.
    Fidler IJ (2011) The role of the organ microenvironment in brain metastasis. Semin Cancer Biol 21:107–112. doi: 10.1016/j.semcancer.2010.12.009 PubMedCrossRefGoogle Scholar
  16. 16.
    Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood–brain barrier. Neurobiol Dis 37:13–25. doi: 10.1016/j.nbd.2009.07.030 PubMedCrossRefGoogle Scholar
  17. 17.
    Palmieri D, Chambers AF, Felding-Habermann B, Huang S, Steeg PS (2007) The biology of metastasis to a sanctuary site. Clin Cancer Res 13:1656–1662. doi: 10.1158/1078-0432.CCR-06-2659 PubMedCrossRefGoogle Scholar
  18. 18.
    Lorger M, Felding-Habermann B (2010) Capturing changes in the brain microenvironment during initial steps of breast cancer brain metastasis. Am J Pathol 176:2958–2971. doi: 10.2353/ajpath.2010.090838 PubMedCrossRefGoogle Scholar
  19. 19.
    Schackert G, Fidler IJ (1988) Development of in vivo models for studies of brain metastasis. Int J Cancer 41:589–594PubMedCrossRefGoogle Scholar
  20. 20.
    Balathasan L, Beech JS, Muschel RJ (2013) Ultrasonography-guided intracardiac injection: an improvement for quantitative brain colonization assays. Am J Pathol 183:26–34. doi: 10.1016/j.ajpath.2013.03.003 PubMedCrossRefGoogle Scholar
  21. 21.
    Chua JY, Pendharkar AV, Wang N, Choi R, Andres RH, Gaeta X, Zhang J, Moseley ME, Guzman R (2011) Intra-arterial injection of neural stem cells using a microneedle technique does not cause microembolic strokes. J Cereb Blood Flow Metab 31:1263–1271. doi: 10.1038/jcbfm.2010.213 PubMedCrossRefGoogle Scholar
  22. 22.
    Rapoport SI, Fredericks WR, Ohno K, Pettigrew KD (1980) Quantitative aspects of reversible osmotic opening of the blood–brain barrier. Am J Physiol 238:R421–R431PubMedGoogle Scholar
  23. 23.
    Liu R, Martuza RL, Rabkin SD (2005) Intracarotid delivery of oncolytic HSV vector G47 D to metastatic breast cancer in the brain. Gene Ther 12:647–654. doi: 10.1038/sj.gt.3302445 PubMedCrossRefGoogle Scholar
  24. 24.
    Mehmet K, Ahishali B (2011) Assessment of permeability in barrier type of endothelium in brain using tracers: Evans blue, sodium fluorescein, and horseradish peroxidase. In: Turksen K (ed) Methods Mol Biol. Humana Press, Totowa, pp 369–382Google Scholar
  25. 25.
    Lockman PR, Mittapalli RK, Taskar KS, Rudraraju V, Gril B, Bohn KA, Adkins CE, Roberts A, Thorsheim HR, Gaasch JA, Huang S, Palmieri D, Steeg PS, Smith QR (2010) Heterogeneous blood-tumor barrier permeability determines drug efficacy in experimental brain metastases of breast cancer. Clin Cancer Res 16:5664–5678. doi: 10.1158/1078-0432.CCR-10-1564 PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Inoue Y, Kiryu S, Watanabe M, Tojo A, Ohtomo K (2010) Timing of imaging after d-luciferin injection affects the longitudinal assessment of tumor growth using in vivo bioluminescence imaging. Int J Biomed Imaging 2010:7–12. doi: 10.1155/2010/471408 CrossRefGoogle Scholar
  27. 27.
    Nieuwenhuys R, Voogd J, Van Huijzen C (2007) The human central nervous system: a synopsis and atlas. Springer, BerlinGoogle Scholar
  28. 28.
    Daphu I, Sundstrøm T, Horn S, Huszthy PC, Niclou SP, Sakariassen PO, Immervoll H, Miletic H, Bjerkvig R, Thorsen F (2013) In vivo animal models for studying brain metastasis: value and limitations. Clin Exp Metastasis 30:695–710. doi: 10.1007/s10585-013-9566-9 PubMedCrossRefGoogle Scholar
  29. 29.
    Berghoff A, Bago-Horvath Z, Ilhan-Mutlu A, Magerle M, Dieckmann K, Marosi C, Birner P, Widhalm G, Steger G, Zielinski C, Bartsch R, Preusser M (2012) Brain-only metastatic breast cancer is a distinct clinical entity characterised by favourable median overall survival time and a high rate of long-term survivors. Br J Cancer 107:1454–1458. doi: 10.1038/bjc.2012.440 PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Deeken JF, Löscher W (2007) The blood–brain barrier and cancer: transporters, treatment, and Trojan horses. Clin Cancer Res 13:1663–1674. doi: 10.1158/1078-0432.CCR-06-2854 PubMedCrossRefGoogle Scholar
  31. 31.
    Prabhu SS, Broaddus WC, Oveissi C, Berr SS, Gillies GT (2000) Determination of intracranial tumor volumes in a rodent brain using magnetic resonance imaging, Evans blue, and histology: a comparative study. IEEE Trans Biomed Eng 47:259–265PubMedCrossRefGoogle Scholar
  32. 32.
    Zhou H, Chen M, Zhao D (2013) Longitudinal MRI evaluation of intracranial development and vascular characteristics of breast cancer brain metastases in a mouse model. PLoS One 8:1–11CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • John Do
    • 1
  • Deshka Foster
    • 1
  • Corinne Renier
    • 1
  • Hannes Vogel
    • 2
  • Sahar Rosenblum
    • 3
  • Timothy C. Doyle
    • 4
  • Victor Tse
    • 3
  • Irene Wapnir
    • 1
    Email author
  1. 1.Department of SurgeryStanford University School of MedicineStanfordUSA
  2. 2.Department of PathologyStanford University School of MedicineStanfordUSA
  3. 3.Department of NeurosurgeryStanford University School of MedicineStanfordUSA
  4. 4.Department of PediatricsStanford University School of MedicineStanfordUSA

Personalised recommendations