Advertisement

Breast Cancer Research and Treatment

, Volume 143, Issue 3, pp 531–539 | Cite as

Utility of 3-dimensional echocardiography, global longitudinal strain, and exercise stress echocardiography to detect cardiac dysfunction in breast cancer patients treated with doxorubicin-containing adjuvant therapy

  • Michel G. Khouri
  • Whitney E. Hornsby
  • Niels Risum
  • Eric J. Velazquez
  • Samantha Thomas
  • Amy Lane
  • Jessica M. Scott
  • Graeme J. Koelwyn
  • James E. Herndon
  • John R. Mackey
  • Pamela S. Douglas
  • Lee W. JonesEmail author
Epidemiology

Abstract

Conventional resting left ventricular ejection fraction (LVEF) assessments have limitations for detecting doxorubicin (DOX)-related cardiac dysfunction. Novel resting echocardiographic parameters, including 3-dimensional echocardiography (3DE) and global longitudinal strain (GLS), have potential for early identification of chemotherapy-related myocardial injury. Exercise “stress” is an established method to uncover impairments in cardiac function but has received limited attention in the adult oncology setting. We evaluated the utility of an integrated approach using 3DE, GLS, and exercise stress echocardiography for detecting subclinical cardiac dysfunction in early breast cancer patients treated with DOX-containing chemotherapy. Fifty-seven asymptomatic women with early breast cancer (mean 26 ± 22 months post-chemotherapy) and 20 sex-matched controls were studied. Resting left ventricular (LV) function was assessed by LVEF using 2-dimensional echocardiography (2DE) and 3DE and by GLS using 2-dimensional speckle-tracking echocardiography (2D-STE). After resting assessments, subjects completed cardiopulmonary exercise testing with stress 2DE. Resting LVEF was lower in patients than controls by 3DE (55 ± 4 vs. 59 ± 5 %; p = 0.005) but not 2DE (56 ± 4 vs. 58 ± 3 %; p = 0.169). 10 of 51 (20 %) patients had GLS greater than or equal to −17 %, which was below the calculated lower limit of normal (control mean 2SD); this patient subgroup had a mean 20 % impairment in GLS (−16.1 ± 0.9 vs. −20.1 ± 1.5 %; p < 0.001), despite similar LVEF by 2DE and 3DE compared to controls (p > 0.05). Cardiopulmonary function (VO2peak) was 20 % lower in patients than controls (p < 0.001). Exercise stress 2DE assessments of stroke volume (61 ± 11 vs. 69 ± 15 ml; p = 0.018) and cardiac index (2.3 ± 0.9 vs. 3.1 ± 0.8 l min−1 m−2 mean increase; p = 0.003) were lower in patients than controls. Post-exercise increase in cardiac index predicted VO2peak (r = 0.429, p = 0.001). Resting 3DE, GLS, and exercise stress 2DE detect subclinical cardiac dysfunction not apparent with resting 2DE in post-DOX breast cancer patients.

Keywords

Adjuvant therapy Breast cancer Cardiotoxicity Echocardiography Stress testing 

Abbreviations

ANCOVA

Analysis of covariance

BSA

Body surface area

CAD

Coronary artery disease

CMR

Cardiac magnetic resonance

CPET

Cardiopulmonary exercise test

DOX

Doxorubicin

EDV

End-diastolic volume

ER

Estrogen receptor

ESV

End-systolic volume

GLS

Global longitudinal strain

HER

Human epidermal growth factor receptor

HF

Heart failure

LLN

Lower limit of normal

LV

Left ventricle/ventricular

LVCR

Left ventricular contractile reserve

LVEF

Left ventricular ejection fraction

MUGA

Multi-gated acquisition scan

SV

Stroke volume

2DE

2-Dimensional echocardiography

2D-STE

2-Dimensional speckle-tracking echocardiography

3DE

3-Dimensional echocardiography

VO2peak

Peak oxygen consumption

WMSI

Wall motion scoring index

Notes

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

Experiments performed in this study comply with the current laws of the United States.

References

  1. 1.
    Von Hoff DD, Layard MW, Basa P, Davis HL Jr, Von Hoff AL, Rozencweig M, Muggia FM (1979) Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med 91(5):710–717CrossRefGoogle Scholar
  2. 2.
    Swain SM, Whaley FS, Ewer MS (2003) Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer 97(11):2869–2879. doi: 10.1002/cncr.11407 PubMedCrossRefGoogle Scholar
  3. 3.
    Mackey JR, Martin M, Pienkowski T, Rolski J, Guastalla JP, Sami A, Glaspy J, Juhos E, Wardley A, Fornander T, Hainsworth J, Coleman R, Modiano MR, Vinholes J, Pinter T, Rodriguez-Lescure A, Colwell B, Whitlock P, Provencher L, Laing K, Walde D, Price C, Hugh JC, Childs BH, Bassi K, Lindsay MA, Wilson V, Rupin M, Houe V, Vogel C (2013) Adjuvant docetaxel, doxorubicin, and cyclophosphamide in node-positive breast cancer: 10-year follow-up of the phase 3 randomised BCIRG 001 trial. Lancet Oncol 14(1):72–80. doi: 10.1016/S1470-2045(12)70525-9 PubMedCrossRefGoogle Scholar
  4. 4.
    Eschenhagen T, Force T, Ewer MS, de Keulenaer GW, Suter TM, Anker SD, Avkiran M, de Azambuja E, Balligand JL, Brutsaert DL, Condorelli G, Hansen A, Heymans S, Hill JA, Hirsch E, Hilfiker-Kleiner D, Janssens S, de Jong S, Neubauer G, Pieske B, Ponikowski P, Pirmohamed M, Rauchhaus M, Sawyer D, Sugden PH, Wojta J, Zannad F, Shah AM (2011) Cardiovascular side effects of cancer therapies: a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 13(1):1–10. doi: 10.1093/eurjhf/hfq213 PubMedCrossRefGoogle Scholar
  5. 5.
    Carver JR, Shapiro CL, Ng A, Jacobs L, Schwartz C, Virgo KS, Hagerty KL, Somerfield MR, Vaughn DJ (2007) American Society of Clinical Oncology clinical evidence review on the ongoing care of adult cancer survivors: cardiac and pulmonary late effects. J Clin Oncol 25(25):3991–4008. doi: 10.1200/JCO.2007.10.9777 PubMedCrossRefGoogle Scholar
  6. 6.
    Yancy CW, Jessup M, Bozkurt B, Masoudi FA, Butler J, McBride PE, Casey DE Jr, McMurray JJ, Drazner MH, Mitchell JE, Fonarow GC, Peterson PN, Geraci SA, Horwich T, Januzzi JL, Johnson MR, Kasper EK, Levy WC, Riegel B, Sam F, Stevenson LW, Tang WH, Tsai EJ, Wilkoff BL (2013) ACCF/AHA guideline for the management of heart failure: a report of the American college of cardiology foundation/American heart association task force on practice guidelines. J Am Coll Cardiol. doi: 10.1016/j.jacc.2013.05.019 PubMedCentralGoogle Scholar
  7. 7.
    Christian JB, Finkle JK, Ky B, Douglas PS, Gutstein DE, Hockings PD, Lainee P, Lenihan DJ, Mason JW, Sager PT, Todaro TG, Hicks KA, Kane RC, Ko HS, Lindenfeld J, Michelson EL, Milligan J, Munley JY, Raichlen JS, Shahlaee A, Strnadova C, Ye B, Turner JR (2012) Cardiac imaging approaches to evaluate drug-induced myocardial dysfunction. Am Heart J 164(6):846–855. doi: 10.1016/j.ahj.2012.09.001 PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Stanton T, Leano R, Marwick TH (2009) Prediction of all-cause mortality from global longitudinal speckle strain: comparison with ejection fraction and wall motion scoring. Circ Cardiovasc Imaging 2(5):356–364. doi: 10.1161/CIRCIMAGING.109.862334 PubMedCrossRefGoogle Scholar
  9. 9.
    Sawaya H, Sebag IA, Plana JC, Januzzi JL, Ky B, Cohen V, Gosavi S, Carver JR, Wiegers SE, Martin RP, Picard MH, Gerszten RE, Halpern EF, Passeri J, Kuter I, Scherrer-Crosbie M (2011) Early detection and prediction of cardiotoxicity in chemotherapy-treated patients. Am J Cardiol 107(9):1375–1380. doi: 10.1016/j.amjcard.2011.01.006 PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Sawaya H, Sebag IA, Plana JC, Januzzi JL, Ky B, Tan TC, Cohen V, Banchs J, Carver JR, Wiegers SE, Martin RP, Picard MH, Gerszten RE, Halpern EF, Passeri J, Kuter I, Scherrer-Crosbie M (2012) Assessment of echocardiography and biomarkers for the extended prediction of cardiotoxicity in patients treated with anthracyclines, taxanes, and trastuzumab. Circ Cardiovasc Imaging 5(5):596–603. doi: 10.1161/CIRCIMAGING.112.973321 PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Jensen BV, Skovsgaard T, Nielsen SL (2002) Functional monitoring of anthracycline cardiotoxicity: a prospective, blinded, long-term observational study of outcome in 120 patients. Ann Oncol 13(5):699–709PubMedCrossRefGoogle Scholar
  12. 12.
    Ewer MS, Lenihan DJ (2008) Left ventricular ejection fraction and cardiotoxicity: is our ear really to the ground? J Clin Oncol 26(8):1201–1203. doi: 10.1200/JCO.2007.14.8742 PubMedCrossRefGoogle Scholar
  13. 13.
    Ewer MS, Ali MK, Mackay B, Wallace S, Valdivieso M, Legha SS, Benjamin RS, Haynie TP (1984) A comparison of cardiac biopsy grades and ejection fraction estimations in patients receiving Adriamycin. J Clin Oncol 2(2):112–117PubMedGoogle Scholar
  14. 14.
    McKillop JH, Bristow MR, Goris ML, Billingham ME, Bockemuehl K (1983) Sensitivity and specificity of radionuclide ejection fractions in doxorubicin cardiotoxicity. Am Heart J 106(5 Pt 1):1048–1056PubMedCrossRefGoogle Scholar
  15. 15.
    Doyle JJ, Neugut AI, Jacobson JS, Grann VR, Hershman DL (2005) Chemotherapy and cardiotoxicity in older breast cancer patients: a population-based study. J Clin Oncol 23(34):8597–8605. doi: 10.1200/JCO.2005.02.5841 PubMedCrossRefGoogle Scholar
  16. 16.
    Khouri MG, Douglas PS, Mackey JR, Martin M, Scott JM, Scherrer-Crosbie M, Jones LW (2012) Cancer therapy-induced cardiac toxicity in early breast cancer: addressing the unresolved issues. Circulation 126(23):2749–2763. doi: 10.1161/CIRCULATIONAHA.112.100560 PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Walker J, Bhullar N, Fallah-Rad N, Lytwyn M, Golian M, Fang T, Summers AR, Singal PK, Barac I, Kirkpatrick ID, Jassal DS (2010) Role of three-dimensional echocardiography in breast cancer: comparison with two-dimensional echocardiography, multiple-gated acquisition scans, and cardiac magnetic resonance imaging. J Clin Oncol 28(21):3429–3436. doi: 10.1200/JCO.2009.26.7294 PubMedCrossRefGoogle Scholar
  18. 18.
    Thavendiranathan P, Grant AD, Negishi T, Plana JC, Popovic ZB, Marwick TH (2013) Reproducibility of echocardiographic techniques for sequential assessment of left ventricular ejection fraction and volumes: application to patients undergoing cancer chemotherapy. J Am Coll Cardiol 61(1):77–84. doi: 10.1016/j.jacc.2012.09.035 PubMedCrossRefGoogle Scholar
  19. 19.
    Jurcut R, Wildiers H, Ganame J, D’Hooge J, De Backer J, Denys H, Paridaens R, Rademakers F, Voigt JU (2008) Strain rate imaging detects early cardiac effects of pegylated liposomal Doxorubicin as adjuvant therapy in elderly patients with breast cancer. J Am Soc Echocardiogr 21(12):1283–1289. doi: 10.1016/j.echo.2008.10.005 PubMedCrossRefGoogle Scholar
  20. 20.
    Hare JL, Brown JK, Leano R, Jenkins C, Woodward N, Marwick TH (2009) Use of myocardial deformation imaging to detect preclinical myocardial dysfunction before conventional measures in patients undergoing breast cancer treatment with trastuzumab. Am Heart J 158(2):294–301. doi: 10.1016/j.ahj.2009.05.031 PubMedCrossRefGoogle Scholar
  21. 21.
    Negishi K, Negishi T, Haluska BA, Hare JL, Plana JC, Marwick TH (2013) Use of speckle strain to assess left ventricular responses to cardiotoxic chemotherapy and cardioprotection. Eur Heart J Cardiovasc Imaging. doi: 10.1093/ehjci/jet159 PubMedGoogle Scholar
  22. 22.
    Fallah-Rad N, Walker JR, Wassef A, Lytwyn M, Bohonis S, Fang T, Tian G, Kirkpatrick ID, Singal PK, Krahn M, Grenier D, Jassal DS (2011) The utility of cardiac biomarkers, tissue velocity and strain imaging, and cardiac magnetic resonance imaging in predicting early left ventricular dysfunction in patients with human epidermal growth factor receptor II-positive breast cancer treated with adjuvant trastuzumab therapy. J Am Coll Cardiol 57(22):2263–2270. doi: 10.1016/j.jacc.2010.11.063 PubMedCrossRefGoogle Scholar
  23. 23.
    Ho E, Brown A, Barrett P, Morgan RB, King G, Kennedy MJ, Murphy RT (2010) Subclinical anthracycline- and trastuzumab-induced cardiotoxicity in the long-term follow-up of asymptomatic breast cancer survivors: a speckle tracking echocardiographic study. Heart 96(9):701–707. doi: 10.1136/hrt.2009.173997 PubMedCrossRefGoogle Scholar
  24. 24.
    Koelwyn GJ, Khouri M, Mackey JR, Douglas PS, Jones LW (2012) Running on empty: cardiovascular reserve capacity and late effects of therapy in cancer survivorship. J Clin Oncol 30(36):4458–4461. doi: 10.1200/JCO.2012.44.0891 PubMedCrossRefGoogle Scholar
  25. 25.
    Jones LW, Haykowsky MJ, Swartz JJ, Douglas PS, Mackey JR (2007) Early breast cancer therapy and cardiovascular injury. J Am Coll Cardiol 50(15):1435–1441. doi: 10.1016/j.jacc.2007.06.037 PubMedCrossRefGoogle Scholar
  26. 26.
    Drafts BC, Twomley KM, D’Agostino R Jr, Lawrence J, Avis N, Ellis LR, Thohan V, Jordan J, Melin SA, Torti FM, Little WC, Hamilton CA, Hundley WG (2013) Low to moderate dose anthracycline-based chemotherapy is associated with early noninvasive imaging evidence of subclinical cardiovascular disease. JACC Cardiovasc Imaging 6(8):877–885. doi: 10.1016/j.jcmg.2012.11.017 PubMedCrossRefGoogle Scholar
  27. 27.
    Tham EB, Haykowsky MJ, Chow K, Spavor M, Kaneko S, Khoo NS, Pagano JJ, Mackie AS, Thompson RB (2013) Diffuse myocardial fibrosis by T1-mapping in children with subclinical anthracycline cardiotoxicity: relationship to exercise capacity, cumulative dose and remodeling. J Cardiovasc Magn Reson 15:48. doi: 10.1186/1532-429X-15-48 PubMedCrossRefGoogle Scholar
  28. 28.
    Jones LW, Courneya KS, Mackey JR, Muss HB, Pituskin EN, Scott JM, Hornsby WE, Coan AD, Herndon JE 2nd, Douglas PS, Haykowsky M (2012) Cardiopulmonary function and age-related decline across the breast cancer survivorship continuum. J Clin Oncol 30(20):2530–2537. doi: 10.1200/JCO.2011.39.9014 PubMedCrossRefGoogle Scholar
  29. 29.
    Gupta S, Rohatgi A, Ayers CR, Willis BL, Haskell WL, Khera A, Drazner MH, de Lemos JA, Berry JD (2011) Cardiorespiratory fitness and classification of risk of cardiovascular disease mortality. Circulation 123(13):1377–1383. doi: 10.1161/CIRCULATIONAHA.110.003236 PubMedCrossRefGoogle Scholar
  30. 30.
    Gulati M, Pandey DK, Arnsdorf MF, Lauderdale DS, Thisted RA, Wicklund RH, Al-Hani AJ, Black HR (2003) Exercise capacity and the risk of death in women: the St James Women Take Heart Project. Circulation 108(13):1554–1559. doi: 10.1161/01.CIR.0000091080.57509.E9 PubMedCrossRefGoogle Scholar
  31. 31.
    Jones LW, Watson D, Herndon JE 2nd, Eves ND, Haithcock BE, Loewen G, Kohman L (2010) Peak oxygen consumption and long-term all-cause mortality in nonsmall cell lung cancer. Cancer 116(20):4825–4832. doi: 10.1002/cncr.25396 PubMedCrossRefGoogle Scholar
  32. 32.
    Jones LW, Hornsby WE, Goetzinger A, Forbes LM, Sherrard EL, Quist M, Lane AT, West M, Eves ND, Gradison M, Coan A, Herndon JE, Abernethy AP (2012) Prognostic significance of functional capacity and exercise behavior in patients with metastatic non-small cell lung cancer. Lung Cancer 76(2):248–252. doi: 10.1016/j.lungcan.2011.10.009 PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Common Terminology Criteria for Adverse Events v4.03 (CTCAE). http://evs.nci.nih.gov/ftp1/CTCAE. Accessed Aug 1 2013
  34. 34.
    American Thoracic Society, American College of Chest Physicians (2003) ATS/ACCP Statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med 167(2):211–277. doi: 10.1164/rccm.167.2.211 CrossRefGoogle Scholar
  35. 35.
    Jones LW, Eves ND, Haykowsky M, Freedland SJ, Mackey JR (2009) Exercise intolerance in cancer and the role of exercise therapy to reverse dysfunction. Lancet Oncol 10(6):598–605. doi: 10.1016/S1470-2045(09)70031-2 PubMedCrossRefGoogle Scholar
  36. 36.
    Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise JS, Solomon SD, Spencer KT, Sutton MS, Stewart WJ (2005) Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 18(12):1440–1463. doi: 10.1016/j.echo.2005.10.005 PubMedCrossRefGoogle Scholar
  37. 37.
    Quinones MA, Otto CM, Stoddard M, Waggoner A, Zoghbi WA, Doppler Quantification Task Force of the Nomenclature and Standards Committee of the American Society of Echocardiography (2002) Recommendations for quantification of Doppler echocardiography: a report from the Doppler Quantification Task Force of the Nomenclature and Standards Committee of the American Society of Echocardiography. J Am Soc Echocardiogr 15(2):167–184PubMedCrossRefGoogle Scholar
  38. 38.
    Nagueh SF, Appleton CP, Gillebert TC, Marino PN, Oh JK, Smiseth OA, Waggoner AD, Flachskampf FA, Pellikka PA, Evangelista A (2009) Recommendations for the evaluation of left ventricular diastolic function by echocardiography. J Am Soc Echocardiogr 22(2):107–133. doi: 10.1016/j.echo.2008.11.023 PubMedCrossRefGoogle Scholar
  39. 39.
    Lang RM, Badano LP, Tsang W, Adams DH, Agricola E, Buck T, Faletra FF, Franke A, Hung J, de Isla LP, Kamp O, Kasprzak JD, Lancellotti P, Marwick TH, McCulloch ML, Monaghan MJ, Nihoyannopoulos P, Pandian NG, Pellikka PA, Pepi M, Roberson DA, Shernan SK, Shirali GS, Sugeng L, Ten Cate FJ, Vannan MA, Zamorano JL, Zoghbi WA, American Society of Echocardiography, European Association of Echocardiography (2012) EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography. J Am Soc Echocardiogr 25(1):3–46. doi: 10.1016/j.echo.2011.11.010 PubMedCrossRefGoogle Scholar
  40. 40.
    Gorcsan J 3rd, Tanaka H (2011) Echocardiographic assessment of myocardial strain. J Am Coll Cardiol 58(14):1401–1413. doi: 10.1016/j.jacc.2011.06.038 PubMedCrossRefGoogle Scholar
  41. 41.
    Marwick TH, Leano RL, Brown J, Sun JP, Hoffmann R, Lysyansky P, Becker M, Thomas JD (2009) Myocardial strain measurement with 2-dimensional speckle-tracking echocardiography: definition of normal range. JACC Cardiovasc Imaging 2(1):80–84. doi: 10.1016/j.jcmg.2007.12.007 PubMedCrossRefGoogle Scholar
  42. 42.
    Jenkins C, Bricknell K, Hanekom L, Marwick TH (2004) Reproducibility and accuracy of echocardiographic measurements of left ventricular parameters using real-time three-dimensional echocardiography. J Am Coll Cardiol 44(4):878–886. doi: 10.1016/j.jacc.2004.05.050 PubMedCrossRefGoogle Scholar
  43. 43.
    Civelli M, Cardinale D, Martinoni A, Lamantia G, Colombo N, Colombo A, Gandini S, Martinelli G, Fiorentini C, Cipolla CM (2006) Early reduction in left ventricular contractile reserve detected by dobutamine stress echo predicts high-dose chemotherapy-induced cardiac toxicity. Int J Cardiol 111(1):120–126. doi: 10.1016/j.ijcard.2005.07.029 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Michel G. Khouri
    • 1
  • Whitney E. Hornsby
    • 1
  • Niels Risum
    • 2
  • Eric J. Velazquez
    • 1
  • Samantha Thomas
    • 1
  • Amy Lane
    • 1
  • Jessica M. Scott
    • 3
  • Graeme J. Koelwyn
    • 4
  • James E. Herndon
    • 1
  • John R. Mackey
    • 5
  • Pamela S. Douglas
    • 1
  • Lee W. Jones
    • 1
    Email author
  1. 1.Duke Cancer InstituteDuke University Medical CenterDurhamUSA
  2. 2.The Heart CenterRigshospitaletCopenhagenDenmark
  3. 3.NASA Johnson Space CenterHoustonUSA
  4. 4.School of Health and Exercise SciencesUniversity of British ColumbiaKelownaCanada
  5. 5.Cross Cancer InstituteEdmontonCanada

Personalised recommendations