Breast Cancer Research and Treatment

, Volume 143, Issue 2, pp 219–226

The effects of exercise on cardiovascular outcomes before, during, and after treatment for breast cancer

  • Kathleen M. Sturgeon
  • Bonnie Ky
  • Joseph R. Libonati
  • Kathryn H. Schmitz
Review

Abstract

Asymptomatic cardiotoxicity following breast cancer treatment is a significant issue for many patients, as these patients typically face an increased risk of cardiovascular disease (CVD). Exercise has well established benefits to improve and maintain cardiovascular function across patients with and without CVD. However, there is a dearth of information on the effects of exercise on cardiovascular outcomes in breast cancer patients. While pre-clinical studies support the use of exercise in mitigating cardiotoxicity, only one human study has specifically investigated cardiac function following an exercise intervention during chemotherapy treatment. No significant differences were observed between groups, which highlights the unidentified role of exercise in altering the risk of cardiotoxicity in breast cancer patients. Issues such as establishing the optimal timing, type, and intensity of an exercise program before, during, or after oncologic treatment for breast cancer are unclear. CVD risk and incidence increase in breast cancer survivors post therapy, and CVD is the number one killer of women in the United States. Thus, there is an increasing need to define the efficacy of exercise as a non-pharmacologic intervention in this growing population.

Keywords

Breast cancer Anthracyclines Exercise Cardiac function Cardiotoxicity 

References

  1. 1.
    Society AC (2012) Cancer facts and figures 2012. American Cancer Society, AtlantaGoogle Scholar
  2. 2.
    Yood MU, Wells KE, Alford SH et al (2012) Cardiovascular outcomes in women with advanced breast cancer exposed to chemotherapy. Pharmacoepidemiol Drug Saf 21(8):818–827PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Patnaik JL, Byers T, DiGuiseppi C, Dabelea D, Denberg TD (2011) Cardiovascular disease competes with breast cancer as the leading cause of death for older females diagnosed with breast cancer: a retrospective cohort study. Breast Cancer Res 13(3):R64PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Du XL, Fox EE, Lai D (2008) Competing causes of death for women with breast cancer and change over time from 1975 to 2003. Am J Clin Oncol 31(2):105–116PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Schimmel KJ, Richel DJ, van den Brink RB, Guchelaar HJ (2004) Cardiotoxicity of cytotoxic drugs. Cancer Treat Rev 30(2):181–191PubMedCrossRefGoogle Scholar
  6. 6.
    Senturk T, Kanat O, Evrensel T, Aydinlar A (2009) Capecitabine-induced cardiotoxicity mimicking myocardial infarction. Neth Heart J 17(7–8):277–280PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    van Dalen EC, van der Pal HJ, Bakker PJ, Caron HN, Kremer LC (2004) Cumulative incidence and risk factors of mitoxantrone-induced cardiotoxicity in children: a systematic review. Eur J Cancer 40(5):643–652PubMedCrossRefGoogle Scholar
  8. 8.
    Smith LA, Cornelius VR, Plummer CJ et al (2010) Cardiotoxicity of anthracycline agents for the treatment of cancer: systematic review and meta-analysis of randomised controlled trials. BMC Cancer 10:337PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Moja L, Tagliabue L, Balduzzi S et al (2012) Trastuzumab containing regimens for early breast cancer. Cochrane Database Syst Rev 4:CD006243PubMedGoogle Scholar
  10. 10.
    Rayson D, Richel D, Chia S, Jackisch C, van der Vegt S, Suter T (2008) Anthracycline-trastuzumab regimens for HER2/neu-overexpressing breast cancer: current experience and future strategies. Ann Oncol 19(9):1530–1539PubMedCrossRefGoogle Scholar
  11. 11.
    Bowles EJ, Wellman R, Feigelson HS et al (2012) Risk of heart failure in breast cancer patients after anthracycline and trastuzumab treatment: a retrospective cohort study. J Natl Cancer Inst 104(17):1293–1305PubMedCrossRefGoogle Scholar
  12. 12.
    Dahabreh IJ, Linardou H, Siannis F, Fountzilas G, Murray S (2008) Trastuzumab in the adjuvant treatment of early-stage breast cancer: a systematic review and meta-analysis of randomized controlled trials. Oncologist 13(6):620–630PubMedCrossRefGoogle Scholar
  13. 13.
    Mancuso L, Mancuso A, Scordato F, Pieri M, Valerio MC (2011) Malignancy and radiation-induced cardiotoxicity. Cardiovasc Hematol Disord Drug Targets 11(2):102–108Google Scholar
  14. 14.
    Khan NF, Mant D, Carpenter L, Forman D, Rose PW (2011) Long-term health outcomes in a British cohort of breast, colorectal and prostate cancer survivors: a database study. Br J Cancer 105(Suppl 1):S29–S37PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Yoon GJ, Telli ML, Kao DP, Matsuda KY, Carlson RW, Witteles RM (2010) Left ventricular dysfunction in patients receiving cardiotoxic cancer therapies are clinicians responding optimally? J Am Coll Cardiol 56(20):1644–1650PubMedCrossRefGoogle Scholar
  16. 16.
    Shaikh AY, Shih JA (2012) Chemotherapy-induced cardiotoxicity. Curr Heart Fail Rep 9(2):117–127PubMedCrossRefGoogle Scholar
  17. 17.
    Seicean S, Seicean A, Plana JC, Budd GT, Marwick TH (2012) Effect of statin therapy on the risk for incident heart failure in patients with breast cancer receiving anthracycline chemotherapy: an observational clinical cohort study. J Am Coll Cardiol 60(23):2384–2390PubMedCrossRefGoogle Scholar
  18. 18.
    Mosca L, Benjamin EJ, Berra K et al (2011) Effectiveness-based guidelines for the prevention of cardiovascular disease in women-2011 update: a guideline from the American Heart Association. J Am Coll Cardiol 57(12):1404–1423PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Schmitz KH, Courneya KS, Matthews C et al (2010) American College of Sports Medicine roundtable on exercise guidelines for cancer survivors. Med Sci Sports Exerc 42(7):1409–1426PubMedCrossRefGoogle Scholar
  20. 20.
    Network NCC (2013) NCCN clinical practive guidelines in oncology—cancer related fatigue. http://www.nccn.com/component/content/article/61-symptoms/90-exercise-during-cancer-treatment.html
  21. 21.
    Gulati M, Pandey DK, Arnsdorf MF et al (2003) Exercise capacity and the risk of death in women: The St James Women Take Heart Project. Circulation 108(13):1554–1559PubMedCrossRefGoogle Scholar
  22. 22.
    Manson JE, Greenland P, LaCroix AZ et al (2002) Walking compared with vigorous exercise for the prevention of cardiovascular events in women. N Engl J Med 347(10):716–725PubMedCrossRefGoogle Scholar
  23. 23.
    Bovelli D, Plataniotis G, Roila F (2010) Cardiotoxicity of chemotherapeutic agents and radiotherapy-related heart disease: ESMO clinical practice guidelines. Ann Oncol 21(Suppl 5):v277–v282PubMedCrossRefGoogle Scholar
  24. 24.
    Heck SL, Gulati G, Ree AH et al (2012) Rationale and design of the prevention of cardiac dysfunction during an adjuvant breast cancer therapy (PRADA) trial. Cardiology 123(4):240–247PubMedCrossRefGoogle Scholar
  25. 25.
    Scott JM, Khakoo A, Mackey JR, Haykowsky MJ, Douglas PS, Jones LW (2011) Modulation of anthracycline-induced cardiotoxicity by aerobic exercise in breast cancer: current evidence and underlying mechanisms. Circulation 124(5):642–650PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56(2):185–229PubMedCrossRefGoogle Scholar
  27. 27.
    Ascensao A, Lumini-Oliveira J, Machado NG et al (2011) Acute exercise protects against calcium-induced cardiac mitochondrial permeability transition pore opening in doxorubicin-treated rats. Clin Sci 120(1):37–49PubMedCrossRefGoogle Scholar
  28. 28.
    Ascensao A, Magalhaes J, Soares JM et al (2005) Moderate endurance training prevents doxorubicin-induced in vivo mitochondriopathy and reduces the development of cardiac apoptosis. Am J Physiol Heart Circ Physiol 289(2):H722–H731PubMedCrossRefGoogle Scholar
  29. 29.
    Kavazis AN, Smuder AJ, Min K, Tumer N, Powers SK (2010) Short-term exercise training protects against doxorubicin-induced cardiac mitochondrial damage independent of HSP72. Am J Physiol Heart Circ Physiol 299(5):H1515–H1524PubMedCrossRefGoogle Scholar
  30. 30.
    Werner C, Hanhoun M, Widmann T et al (2008) Effects of physical exercise on myocardial telomere-regulating proteins, survival pathways, and apoptosis. J Am Coll Cardiol 52(6):470–482PubMedCrossRefGoogle Scholar
  31. 31.
    Ascensao A, Magalhaes J, Soares J et al (2005) Endurance training attenuates doxorubicin-induced cardiac oxidative damage in mice. Int J Cardiol 100(3):451–460PubMedCrossRefGoogle Scholar
  32. 32.
    Chicco AJ, Schneider CM, Hayward R (2005) Voluntary exercise protects against acute doxorubicin cardiotoxicity in the isolated perfused rat heart. Am J Physiol Regul Integr Comp Physiol 289(2):R424–R431PubMedCrossRefGoogle Scholar
  33. 33.
    Hydock DS, Lien CY, Schneider CM, Hayward R (2008) Exercise preconditioning protects against doxorubicin-induced cardiac dysfunction. Med Sci Sports Exerc 40(5):808–817PubMedCrossRefGoogle Scholar
  34. 34.
    Wonders KY, Hydock DS, Schneider CM, Hayward R (2008) Acute exercise protects against doxorubicin cardiotoxicity. Integr Cancer Ther 7(3):147–154PubMedCrossRefGoogle Scholar
  35. 35.
    de Paleville DT, Topp RV, Swank AM (2007) Effects of aerobic training prior to and during chemotherapy in a breast cancer patient: a case study. J Strength Cond Res 21(2):635–637PubMedGoogle Scholar
  36. 36.
    Jones LW, Liang Y, Pituskin EN et al (2011) Effect of exercise training on peak oxygen consumption in patients with cancer: a meta-analysis. Oncologist 16(1):112–120PubMedCrossRefGoogle Scholar
  37. 37.
    Haykowsky MJ, Mackey JR, Thompson RB, Jones LW, Paterson DI (2009) Adjuvant trastuzumab induces ventricular remodeling despite aerobic exercise training. Clin Cancer Res 15(15):4963–4967PubMedCrossRefGoogle Scholar
  38. 38.
    Soultati A, Mountzios G, Avgerinou C, Papaxoinis G, Pectasides D, Dimopoulos MA, Papadimitriou C (2012) Endothelial vascular toxicity from chemotherapeutic agents: preclinical evidence and clinical implications. Cancer Treat Rev 38(5):473–483Google Scholar
  39. 39.
    Matsuzawa Y, Sugiyama S, Sumida H, Sugamura K, Nozaki T, Ohba K, Matsubara J, Kurokawa H, Fujisue K, Konishi M, Akiyama E, Suzuki H, Nagayoshi Y, Yamamuro M, Sakamoto K, Iwashita S, Jinnouchi H, Taguri M, Morita S, Matsui K, Kimura K, Umemura S, Ogawa H (2013) Peripheral endothelial function and cardiovascular events in high-risk patients. J Am Heart Assoc 2(6). doi:10.1161/JAHA.113.000426
  40. 40.
    Chow AY, Chin C, Dahl G, Rosenthal DN (2006) Anthracyclines cause endothelial injury in pediatric cancer patients: a pilot study. J Clin Oncol 24(6):925–928PubMedCrossRefGoogle Scholar
  41. 41.
    Bhargava P (2009) VEGF kinase inhibitors: how do they cause hypertension? Am J Physiol Regul Integr Comp Physiol 297(1):R1–R5PubMedCrossRefGoogle Scholar
  42. 42.
    Yeh ET, Bickford CL (2009) Cardiovascular complications of cancer therapy: incidence, pathogenesis, diagnosis, and management. J Am Coll Cardiol 53(24):2231–2247PubMedCrossRefGoogle Scholar
  43. 43.
    Noble M, Russell C, Kraemer L, Sharratt M (2012) UW WELL-FIT: the impact of supervised exercise programs on physical capacity and quality of life in individuals receiving treatment for cancer. Support Care Cancer 20(4):865–873PubMedCrossRefGoogle Scholar
  44. 44.
    Schneider CM, Hsieh CC, Sprod LK, Carter SD, Hayward R (2007) Effects of supervised exercise training on cardiopulmonary function and fatigue in breast cancer survivors during and after treatment. Cancer 110(4):918–925PubMedCrossRefGoogle Scholar
  45. 45.
    Kim CJ, Kang DH, Smith BA, Landers KA (2006) Cardiopulmonary responses and adherence to exercise in women newly diagnosed with breast cancer undergoing adjuvant therapy. Cancer Nurs 29(2):156–165PubMedCrossRefGoogle Scholar
  46. 46.
    Kolden GG, Strauman TJ, Ward A et al (2002) A pilot study of group exercise training (GET) for women with primary breast cancer: feasibility and health benefits. Psychooncology 11(5):447–456PubMedCrossRefGoogle Scholar
  47. 47.
    Lewington S, Clarke R, Qizilbash N, Peto R, Collins R (2002) Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 360(9349):1903–1913PubMedCrossRefGoogle Scholar
  48. 48.
    Belardinelli R, Georgiou D, Cianci G, Berman N, Ginzton L, Purcaro A (1995) Exercise training improves left ventricular diastolic filling in patients with dilated cardiomyopathy. Clinical and prognostic implications. Circulation 91(11):2775–2784PubMedCrossRefGoogle Scholar
  49. 49.
    Coats AJ, Adamopoulos S, Radaelli A et al (1992) Controlled trial of physical training in chronic heart failure. Exercise performance, hemodynamics, ventilation, and autonomic function. Circulation 85(6):2119–2131PubMedCrossRefGoogle Scholar
  50. 50.
    Thompson PD (2005) Exercise prescription and proscription for patients with coronary artery disease. Circulation 112(15):2354–2363PubMedCrossRefGoogle Scholar
  51. 51.
    Pinto BM, Clark MM, Maruyama NC, Feder SI (2003) Psychological and fitness changes associated with exercise participation among women with breast cancer. Psychooncology 12(2):118–126PubMedCrossRefGoogle Scholar
  52. 52.
    Fairey AS, Courneya KS, Field CJ et al (2005) Effect of exercise training on C-reactive protein in postmenopausal breast cancer survivors: a randomized controlled trial. Brain Behav Immun 19(5):381–388PubMedCrossRefGoogle Scholar
  53. 53.
    Courneya KS, Mackey JR, Bell GJ, Jones LW, Field CJ, Fairey AS (2003) Randomized controlled trial of exercise training in postmenopausal breast cancer survivors: cardiopulmonary and quality of life outcomes. J Clin Oncol 21(9):1660–1668PubMedCrossRefGoogle Scholar
  54. 54.
    Hsieh CC, Sprod LK, Hydock DS, Carter SD, Hayward R, Schneider CM (2008) Effects of a supervised exercise intervention on recovery from treatment regimens in breast cancer survivors. Oncol Nurs Forum 35(6):909–915PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Jones LW, Alfano CM (2013) Exercise-oncology research: past, present, and future. Acta Oncol 52(2):195–215PubMedCrossRefGoogle Scholar
  56. 56.
    Mauri D, Pavlidis N, Ioannidis JP (2005) Neoadjuvant versus adjuvant systemic treatment in breast cancer: a meta-analysis. J Natl Cancer Inst 97(3):188–194PubMedCrossRefGoogle Scholar
  57. 57.
    Richardson LC, Royalty J, Howe W, Helsel W, Kammerer W, Benard VB (2010) Timeliness of breast cancer diagnosis and initiation of treatment in the National Breast and Cervical Cancer Early Detection Program, 1996–2005. Am J Public Health 100(9):1769–1776PubMedCrossRefGoogle Scholar
  58. 58.
    Ferrante JM, Rovi S, Das K, Kim S (2007) Family physicians expedite diagnosis of breast disease in urban minority women. J Am Board Fam Med 20(1):52–59PubMedCrossRefGoogle Scholar
  59. 59.
    Lohrisch C, Paltiel C, Gelmon K et al (2006) Impact on survival of time from definitive surgery to initiation of adjuvant chemotherapy for early-stage breast cancer. J Clin Oncol 24(30):4888–4894PubMedCrossRefGoogle Scholar
  60. 60.
    Jones LW, Courneya KS (2002) Exercise counseling and programming preferences of cancer survivors. Cancer Pract 10(4):208–215PubMedCrossRefGoogle Scholar
  61. 61.
    Collier SR, Kanaley JA, Carhart R Jr et al (2008) Effect of 4 weeks of aerobic or resistance exercise training on arterial stiffness, blood flow and blood pressure in pre- and stage-1 hypertensives. J Hum Hypertens 22(10):678–686PubMedCrossRefGoogle Scholar
  62. 62.
    Hambrecht R, Wolf A, Gielen S et al (2000) Effect of exercise on coronary endothelial function in patients with coronary artery disease. N Engl J Med 342(7):454–460PubMedCrossRefGoogle Scholar
  63. 63.
    Speck RM, Courneya KS, Masse LC, Duval S, Schmitz KH (2010) An update of controlled physical activity trials in cancer survivors: a systematic review and meta-analysis. J Cancer Surviv 4(2):87–100PubMedCrossRefGoogle Scholar
  64. 64.
    Miura K, Dyer AR, Greenland P et al (2001) Pulse pressure compared with other blood pressure indexes in the prediction of 25-year cardiovascular and all-cause mortality rates: the Chicago Heart Association Detection Project in Industry Study. Hypertension 38(2):232–237PubMedCrossRefGoogle Scholar
  65. 65.
    Greenland P, Daviglus ML, Dyer AR et al (1999) Resting heart rate is a risk factor for cardiovascular and noncardiovascular mortality: the Chicago Heart Association Detection Project in Industry. Am J Epidemiol 149(9):853–862PubMedCrossRefGoogle Scholar
  66. 66.
    Mensink GB, Hoffmeister H (1997) The relationship between resting heart rate and all-cause, cardiovascular and cancer mortality. Eur Heart J 18(9):1404–1410PubMedCrossRefGoogle Scholar
  67. 67.
    Hambrecht R, Gielen S, Linke A et al (2000) Effects of exercise training on left ventricular function and peripheral resistance in patients with chronic heart failure: a randomized trial. JAMA 283(23):3095–3101PubMedCrossRefGoogle Scholar
  68. 68.
    Hagberg JM, Park JJ, Brown MD (2000) The role of exercise training in the treatment of hypertension: an update. Sports Med 30(3):193–206PubMedCrossRefGoogle Scholar
  69. 69.
    Russo G, Cioffi G, Di Lenarda A et al (2012) Role of renal function on the development of cardiotoxicity associated with trastuzumab-based adjuvant chemotherapy for early breast cancer. Intern Emerg Med 7(5):439–446PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Kathleen M. Sturgeon
    • 1
  • Bonnie Ky
    • 1
  • Joseph R. Libonati
    • 2
  • Kathryn H. Schmitz
    • 1
  1. 1.School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.School of NursingUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations