Advertisement

Breast Cancer Research and Treatment

, Volume 143, Issue 1, pp 99–111 | Cite as

Histone deacetylase inhibitor entinostat reverses epithelial to mesenchymal transition of breast cancer cells by reversing the repression of E-cadherin

  • Preeti Shah
  • Yael Gau
  • Gauri Sabnis
Preclinical study

Abstract

Loss of ERα in breast cancer correlates with poor prognosis, increased recurrence rates, and higher incidence of metastasis. Epigenetic silencing of E-cadherin (loss of which is associated with more invasive phenotype) is observed in metastatic cell lines and invasive breast cancers. Here, we are showing that entinostat (ENT) can reverse epithelial to mesenchymal transition (EMT), which is considered to be a first step in the process of metastases formation. Triple-negative breast cancer cells such as MDA-MB-231 and Hs578T show a basal phenotype characterized by loss of E-cadherin expression and higher expression of mesenchymal markers such as N-cadherin and vimentin along with transcriptional repressors such as twist and snail. When MDA-MB-231 and Hs578T cells or tumors were treated with ENT, E-cadherin transcription was increased along with reduction in N-cadherin mRNA expression. Chromatin immunoprecipitation assay showed that treatment of MDA-MB-231 and Hs578T cells increased the activation of E-cadherin promoter by reducing the association of twist and snail with the E-cadherin (CDH1) promoter and downregulated both the snail and twist. ENT also inhibited cell migration in vitro. In addition, phosphorylation of vimentin was increased, as well as remodeling of vimentin filaments. ENT treatment also reduced formation of tubulin-based microtentacles, which help floating cells attach to other surfaces. These findings suggest that ENT can reverse EMT and may reduce the formation of metastasis.

Keywords

Epithelial to mesenchymal transition E-cadherin HDAC inhibitor 

Abbreviations

ER

Estrogen receptor

AIs

Aromatase inhibitors

HDACi

Histone deacetylase inhibitors

Let

Letrozole

ENT

Entinostat

Notes

Acknowledgments

This work was supported by Grants to G Sabnis (KG10037) from Susan G Komen for the Cure.

Conflict of interest

We do not have any relevant conflict of interest. Syndax Pharmaceuticals (MA, USA) provided entinostat and letrozole used in this study.

Supplementary material

10549_2013_2784_MOESM1_ESM.pdf (951 kb)
Supplementary material 1 (PDF 950 kb)
10549_2013_2784_MOESM2_ESM.docx (149 kb)
Supplementary material 2 (DOCX 149 kb)

References

  1. 1.
    Sabnis GJ, Goloubeva O, Chumsri S, Nguyen N, Sukumar S, Brodie AM (2011) Functional activation of the estrogen receptor-alpha; and aromatase by the HDAC inhibitor entinostat sensitizes ER-negative tumors to letrozole. Cancer Res 71:1893–1903PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Blick T, Widodo E, Hugo H, Waltham M, Lenburg ME, Neve RM, Thompson EW (2008) Epithelial mesenchymal transition traits in human breast cancer cell lines. Clin Exp Metastasis 25:629–642. doi: 10.1007/s10585-008-9170-6 PubMedCrossRefGoogle Scholar
  3. 3.
    Cowin P, Welch DR (2007) Breast cancer progression: controversies and consensus in the molecular mechanisms of metastasis and EMT. J Mammary Gland Biol Neoplasia 12:99–102. doi: 10.1007/s10911-007-9041-9 PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Tse JC, Kalluri R (2007) Mechanisms of metastasis: epithelial-to-mesenchymal transition and contribution of tumor microenvironment. J Cell Biochem 101:816–829. doi: 10.1002/jcb.21215 PubMedCrossRefGoogle Scholar
  5. 5.
    Fearon ER (2003) Connecting estrogen receptor function, transcriptional repression, and E-cadherin expression in breast cancer. Cancer Cell 3:307–310PubMedCrossRefGoogle Scholar
  6. 6.
    Lombaerts M, van Wezel T, Philippo K, Dierssen JW, Zimmerman RM, Oosting J, van Eijk R, Eilers PH, van de Water B, Cornelisse CJ, Cleton-Jansen AM (2006) E-cadherin transcriptional downregulation by promoter methylation but not mutation is related to epithelial-to-mesenchymal transition in breast cancer cell lines. Br J Cancer 94:661–671PubMedCentralPubMedGoogle Scholar
  7. 7.
    Tamura G, Yin J, Wang S, Fleisher AS, Zou T, Abraham JM, Kong D, Smolinski KN, Wilson KT, James SP, Silverberg SG, Nishizuka S, Terashima M, Motoyama T, Meltzer SJ (2000) E-Cadherin gene promoter hypermethylation in primary human gastric carcinomas. J Natl Cancer Inst 92:569–573PubMedCrossRefGoogle Scholar
  8. 8.
    van Horssen R, Hollestelle A, Rens JA, Eggermont AM, Schutte M, Ten Hagen TL (2012) E-cadherin promotor methylation and mutation are inversely related to motility capacity of breast cancer cells. Breast Cancer Res Treat 136:365–377. doi: 10.1007/s10549-012-2261-8 PubMedCrossRefGoogle Scholar
  9. 9.
    Zou D, Yoon HS, Perez D, Weeks RJ, Guilford P, Humar B (2009) Epigenetic silencing in non-neoplastic epithelia identifies E-cadherin (CDH1) as a target for chemoprevention of lobular neoplasia. J Pathol 218:265–272. doi: 10.1002/path.2541 PubMedCrossRefGoogle Scholar
  10. 10.
    Peinado H, Ballestar E, Esteller M, Cano A (2004) Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. Mol Cell Biol 24:306–319PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Vesuna F, van Diest P, Chen JH, Raman V (2008) Twist is a transcriptional repressor of E-cadherin gene expression in breast cancer. Biochem Biophys Res Commun 367:235–241. doi: 10.1016/j.bbrc.2007.11.151 PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Matrone MA, Whipple RA, Thompson K, Cho EH, Vitolo MI, Balzer EM, Yoon JR, Ioffe OB, Tuttle KC, Tan M, Martin SS (2010) Metastatic breast tumors express increased tau, which promotes microtentacle formation and the reattachment of detached breast tumor cells. Oncogene 29:3217–3227. doi: 10.1038/onc.2010.68 PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Whipple RA, Balzer EM, Cho EH, Matrone MA, Yoon JR, Martin SS (2008) Vimentin filaments support extension of tubulin-based microtentacles in detached breast tumor cells. Cancer Res 68:5678–5688. doi: 10.1158/0008-5472.CAN-07-6589 PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Whipple RA, Matrone MA, Cho EH, Balzer EM, Vitolo MI, Yoon JR, Ioffe OB, Tuttle KC, Yang J, Martin SS (2010) Epithelial-to-mesenchymal transition promotes tubulin detyrosination and microtentacles that enhance endothelial engagement. Cancer Res 70:8127–8137. doi: 10.1158/0008-5472.CAN-09-4613 PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Sabnis GJ, Jelovac D, Long B, Brodie A (2005) The role of growth factor receptor pathways in human breast cancer cells adapted to long-term estrogen deprivation. Cancer Res 65:3903–3910PubMedCrossRefGoogle Scholar
  16. 16.
    Solly K, Wang X, Xu X, Strulovici B, Zheng W (2004) Application of real-time cell electronic sensing (RT-CES) technology to cell-based assays. Assay Drug Dev Technol 2:363–372. doi: 10.1089/1540658041850544 PubMedCrossRefGoogle Scholar
  17. 17.
    Ungefroren H, Sebens S, Groth S, Gieseler F, Fandrich F (2011) Differential roles of Src in transforming growth factor-β regulation of growth arrest, epithelial-to-mesenchymal transition and cell migration in pancreatic ductal adenocarcinoma cells. Int J Oncol 38:797–805. doi: 10.3892/ijo.2011.897 PubMedCrossRefGoogle Scholar
  18. 18.
    Whipple RA, Vitolo MI, Boggs AE, Charpentier MS, Thompson K, Martin SS (2013) Parthenolide and costunolide reduce microtentacles and tumor cell attachment by selectively targeting detyrosinated tubulin independent from NF-kappaB inhibition. Breast Cancer Res 15:R83. doi: 10.1186/bcr3477 PubMedCrossRefGoogle Scholar
  19. 19.
    Sabnis G, Schayowitz A, Goloubeva O, Macedo L, Brodie A (2009) Trastuzumab reverses letrozole resistance and amplifies the sensitivity of breast cancer cells to estrogen. Cancer Res 69:1416–1428PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Schech AJ, Kazi AA, Gilani RA, Brodie AH (2013) Zoledronic acid reverses the epithelial-mesenchymal Transition and Inhibits Self-Renewal of Breast Cancer Cells through Inactivation of NF-kappaB. Mol Cancer Ther. doi: 10.1158/1535-7163.MCT-12-0304 PubMedGoogle Scholar
  21. 21.
    Kazi AA, Jones JM, Koos RD (2005) Chromatin immunoprecipitation analysis of gene expression in the rat uterus in vivo: estrogen-induced recruitment of both estrogen receptor alpha and hypoxia-inducible factor 1 to the vascular endothelial growth factor promoter. Mol Endocrinol 19:2006–2019PubMedCrossRefGoogle Scholar
  22. 22.
    Eriksson JE, He T, Trejo-Skalli AV, Harmala-Brasken AS, Hellman J, Chou YH, Goldman RD (2004) Specific in vivo phosphorylation sites determine the assembly dynamics of vimentin intermediate filaments. J Cell Sci 117:919–932. doi: 10.1242/jcs.00906 PubMedCrossRefGoogle Scholar
  23. 23.
    Satelli A, Li S (2011) Vimentin in cancer and its potential as a molecular target for cancer therapy. Cellular and molecular life sciences. CMLS 68:3033–3046. doi: 10.1007/s00018-011-0735-1 PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Carey LA, Perou CM, Livasy CA, Dressler LG, Cowan D, Conway K, Karaca G, Troester MA, Tse CK, Edmiston S, Deming SL, Geradts J, Cheang MC, Nielsen TO, Moorman PG, Earp HS, Millikan RC (2006) Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA 295:2492–2502. doi: 10.1001/jama.295.21.2492 PubMedCrossRefGoogle Scholar
  25. 25.
    Curigliano G, Goldhirsch A (2011) The triple-negative subtype: new ideas for the poorest prognosis breast cancer. J Natl Cancer Inst Monogr 2011:108–110. doi: 10.1093/jncimonographs/lgr038 PubMedCrossRefGoogle Scholar
  26. 26.
    Brady-West DC, McGrowder DA (2011) Triple negative breast cancer: therapeutic and prognostic implications. APJCP 12:2139–2143PubMedGoogle Scholar
  27. 27.
    Guarino M, Rubino B, Ballabio G (2007) The role of epithelial-mesenchymal transition in cancer pathology. Pathology 39:305–318. doi: 10.1080/00313020701329914 PubMedCrossRefGoogle Scholar
  28. 28.
    Guarino M (2007) Epithelial-mesenchymal transition and tumour invasion. Int J Biochem Cell Biol 39:2153–2160. doi: 10.1016/j.biocel.2007.07.011 PubMedCrossRefGoogle Scholar
  29. 29.
    van Roy F, Berx G (2008) The cell–cell adhesion molecule E-cadherin. CMLS 65:3756–3788. doi: 10.1007/s00018-008-8281-1 PubMedCrossRefGoogle Scholar
  30. 30.
    Baranwal S, Alahari SK (2009) Molecular mechanisms controlling E-cadherin expression in breast cancer. Biochem Biophys Res Commun 384:6–11. doi: 10.1016/j.bbrc.2009.04.051 PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Behrens J (2000) Control of beta-catenin signaling in tumor development. Ann NY Acad Sci 910:21–33 discussion 33-25PubMedCrossRefGoogle Scholar
  32. 32.
    Morin PJ (1999) β-catenin signaling and cancer. BioEssays: news and reviews in molecular, cellular and developmental biology 21:1021–1030. doi:  10.1002/(SICI)1521-1878(199912)22
  33. 33.
    Thiery JP (2002) Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2:442–454. doi: 10.1038/nrc822 PubMedCrossRefGoogle Scholar
  34. 34.
    Kokkinos MI, Wafai R, Wong MK, Newgreen DF, Thompson EW, Waltham M (2007) Vimentin and epithelial-mesenchymal transition in human breast cancer–observations in vitro and in vivo. Cells Tissues Organs 185:191–203. doi: 10.1159/000101320 PubMedCrossRefGoogle Scholar
  35. 35.
    Vuoriluoto K, Haugen H, Kiviluoto S, Mpindi JP, Nevo J, Gjerdrum C, Tiron C, Lorens JB, Ivaska J (2011) Vimentin regulates EMT induction by Slug and oncogenic H-Ras and migration by governing Axl expression in breast cancer. Oncogene 30:1436–1448. doi: 10.1038/onc.2010.509 PubMedCrossRefGoogle Scholar
  36. 36.
    Webster DR, Gundersen GG, Bulinski JC, Borisy GG (1987) Differential turnover of tyrosinated and detyrosinated microtubules. Proc Natl Acad Sci USA 84:9040–9044PubMedCrossRefGoogle Scholar
  37. 37.
    Mialhe A, Lafanechere L, Treilleux I, Peloux N, Dumontet C, Bremond A, Panh MH, Payan R, Wehland J, Margolis RL, Job D (2001) Tubulin detyrosination is a frequent occurrence in breast cancers of poor prognosis. Cancer Res 61:5024–5027PubMedGoogle Scholar
  38. 38.
    Kreis TE (1987) Microtubules containing detyrosinated tubulin are less dynamic. EMBO J 6:2597–2606PubMedGoogle Scholar
  39. 39.
    Peris L, Wagenbach M, Lafanechere L, Brocard J, Moore AT, Kozielski F, Job D, Wordeman L, Andrieux A (2009) Motor-dependent microtubule disassembly driven by tubulin tyrosination. J Cell Biol 185:1159–1166. doi: 10.1083/jcb.200902142 PubMedCrossRefGoogle Scholar
  40. 40.
    Barak V, Goike H, Panaretakis KW, Einarsson R (2004) Clinical utility of cytokeratins as tumor markers. Clin Biochem 37:529–540. doi: 10.1016/j.clinbiochem.2004.05.009 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Pharmacology and Experimental TherapeuticsUniversity of Maryland School of MedicineBaltimoreUSA

Personalised recommendations