Advertisement

Breast Cancer Research and Treatment

, Volume 142, Issue 1, pp 211–223 | Cite as

Distinct nuclear receptor expression in stroma adjacent to breast tumors

  • Kevin C. Knower
  • Ashwini L. Chand
  • Natalie Eriksson
  • Kiyoshi Takagi
  • Yasuhiro Miki
  • Hironobu Sasano
  • Jane E. Visvader
  • Geoffrey J. Lindeman
  • John W. Funder
  • Peter J. Fuller
  • Evan R. Simpson
  • Wayne D. Tilley
  • Peter J. Leedman
  • J. Dinny Graham
  • George E. O. Muscat
  • Christine L. Clarke
  • Colin D. Clyne
Brief Report

Abstract

The interaction between breast tumor epithelial and stromal cells is vital for initial and recurrent tumor growth. While breast cancer-associated stromal cells provide a favorable environment for proliferation and metastasis, the molecular mechanisms contributing to this process are not fully understood. Nuclear receptors (NRs) are intracellular transcription factors that directly regulate gene expression. Little is known about the status of NRs in cancer-associated stroma. Nuclear Receptor Low-Density Taqman Arrays were used to compare the gene expression profiles of all 48 NR family members in a collection of primary cultured cancer-associated fibroblasts (CAFs) obtained from estrogen receptor (ER)α positive breast cancers (n = 9) and normal breast adipose fibroblasts (NAFs) (n = 7). Thirty-three of 48 NRs were expressed in both the groups, while 11 NRs were not detected in either. Three NRs (dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1 (DAX-1); estrogen-related receptor beta (ERR-β); and RAR-related orphan receptor beta (ROR-β)) were only detected in NAFs, while one NR (liver receptor homolog-1 (LRH-1)) was unique to CAFs. Of the NRs co-expressed, four were significantly down-regulated in CAFs compared with NAFs (RAR-related orphan receptor-α (ROR-α); Thyroid hormone receptor-β (TR-β); vitamin D receptor (VDR); and peroxisome proliferator-activated receptor-γ (PPAR-γ)). Quantitative immunohistochemistry for LRH-1, TR-β, and PPAR-γ proteins in stromal fibroblasts from an independent panel of breast cancers (ER-positive (n = 15), ER-negative (n = 15), normal (n = 14)) positively correlated with mRNA expression profiles. The differentially expressed NRs identified in tumor stroma are key mediators in aromatase regulation and subsequent estrogen production. Our findings reveal a distinct pattern of NR expression that therefore fits with a sustained and increased local estrogen microenvironment in ER-positive tumors. NRs in CAFs may provide a new avenue for the development of intratumoral-targeted therapies in breast cancer.

Keywords

Nuclear receptors Breast cancer Stroma Aromatase Estrogen Tumor microenvironment 

Notes

Acknowledgments

This study was supported by the National Health and Medical Research Council of Australia through fellowships to CDC (#338518), JEV (Australia Fellow), and GJL (637307), ERS, PJF, and CLC; and NHMRC IRIISS; GEOM is the University of Queensland Vice Chancellors research fellowship; the Victorian State Government through Victoria Cancer Agency funding of the Victoria Breast Cancer Research Consortium and the Victorian Government’s Operational Infrastructure Support Program; the United States Department of Defense fellowship to ALC; a Collaborative Program from the National Breast Cancer Foundation Australia. Breast cancer and normal tissues were provided by Australian Breast Cancer Tissue Bank (ABCTB), which is supported by the National Health and Medical Research Council of Australia, the Cancer Institute NSW, and the National Breast Cancer Foundation, or by the Victorian Cancer BioBank Australia, which is supported by the Victorian Government. ABCTB tissues and samples were made available to researchers on a nonexclusive basis. Normal breast biopsies were obtained from the Susan G. Komen for the Cure Tissue Bank at the IU Simon Cancer Center. The authors thank contributors to the Susan G. Komen for the Cure Tissue Bank, including Indiana University that collected the samples used in this study, as well as parents and families whose participation and help made this study possible. The authors would like to thank Drs Elgene Lim and François Vaillant for their assistance in stromal cell collection, and Silke Kantimm for assistance with immunohistochemistry. PHI Data Audit #13-08.

Conflict of interest

The authors declare no conflicts of interest.

Supplementary material

10549_2013_2716_MOESM1_ESM.pptx (96 kb)
Supplementary Figure 1. Supplementary Figure 1. Validation of CAFs using marker SDF-1. RNA isolated from NAFs (n = 7) and CAFs (n = 9) was used for qRT-PCR of the CAF marker SDF-1. Significant levels of SDF-1 mRNA were detected in CAFs compared with normal. Two-tailed independent t test *p < 0.05. Error bars represent standard error of means. (PPTX 96 kb)

References

  1. 1.
    Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6(5):392–401PubMedCrossRefGoogle Scholar
  2. 2.
    Wiseman BS, Werb Z (2002) Stromal effects on mammary gland development and breast cancer. Science 296(5570):1046–1049PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Bhowmick NA, Neilson EG, Moses HL (2004) Stromal fibroblasts in cancer initiation and progression. Nature 432(7015):332–337PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Zhao Y, Agarwal VR, Mendelson CR, Simpson ER (1996) Estrogen biosynthesis proximal to a breast tumor is stimulated by PGE2 via cyclic AMP, leading to activation of promoter II of the CYP19 (aromatase) gene. Endocrinology 137(12):5739–5742PubMedGoogle Scholar
  5. 5.
    Simpson ER, Zhao Y (1996) Estrogen biosynthesis in adipose. Significance in breast cancer development. Ann NY Acad Sci 784:18–26PubMedCrossRefGoogle Scholar
  6. 6.
    Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang H, Porter D, Hu M, Chin L, Richardson A, Schnitt S, Sellers WR, Polyak K (2004) Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 6(1):17–32PubMedCrossRefGoogle Scholar
  7. 7.
    Gold LI (1999) The role for transforming growth factor-beta (TGF-beta) in human cancer. Crit Rev Oncog 10(4):303–360PubMedGoogle Scholar
  8. 8.
    Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2(3):161–174PubMedCrossRefGoogle Scholar
  9. 9.
    Mueller MM, Fusenig NE (2004) Friends or foes - bipolar effects of the tumour stroma in cancer. Nat Rev Cancer 4(11):839–849PubMedCrossRefGoogle Scholar
  10. 10.
    Serini G, Gabbiani G (1999) Mechanisms of myofibroblast activity and phenotypic modulation. Exp Cell Res 250(2):273–283PubMedCrossRefGoogle Scholar
  11. 11.
    Desmouliere A, Redard M, Darby I, Gabbiani G (1995) Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am J Pathol 146(1):56–66PubMedGoogle Scholar
  12. 12.
    Li H, Fan X, Houghton J (2007) Tumor microenvironment: the role of the tumor stroma in cancer. J Cell Biochem 101(4):805–815PubMedCrossRefGoogle Scholar
  13. 13.
    Sympson CJ, Bissell MJ, Werb Z (1995) Mammary gland tumor formation in transgenic mice overexpressing stromelysin-1. Semin Cancer Biol 6(3):159–163PubMedCrossRefGoogle Scholar
  14. 14.
    Barcellos-Hoff MH, Ravani SA (2000) Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells. Cancer Res 60(5):1254–1260PubMedGoogle Scholar
  15. 15.
    Conzen SD (2008) Minireview: nuclear receptors and breast cancer. Mol Endocrinol 22(10):2215–2228PubMedCrossRefGoogle Scholar
  16. 16.
    Muscat GE, Eriksson NA, Byth K, Loi S, Graham D, Jindal S, Davis MJ, Clyne C, Funder JW, Simpson ER, Ragan MA, Kuczek E, Fuller PJ, Tilley WD, Leedman PJ, Clarke CL (2013) Research resource: nuclear receptors as transcriptome: discriminant and prognostic value in breast cancer. Mol Endocrinol 27(2):350–365PubMedCrossRefGoogle Scholar
  17. 17.
    Lazarus KA, Wijayakumara D, Chand AL, Simpson ER, Clyne CD (2012) Therapeutic potential of Liver Receptor Homolog-1 modulators. J Steroid Biochem Mol Biol 130(3–5):138–146PubMedCrossRefGoogle Scholar
  18. 18.
    Kliewer SA, Lehmann JM, Willson TM (1999) Orphan nuclear receptors: shifting endocrinology into reverse. Science 284(5415):757–760PubMedCrossRefGoogle Scholar
  19. 19.
    Humphreys RC, Lydon J, O’Malley BW, Rosen JM (1997) Mammary gland development is mediated by both stromal and epithelial progesterone receptors. Mol Endocrinol 11(6):801–811PubMedGoogle Scholar
  20. 20.
    Mueller SO, Clark JA, Myers PH, Korach KS (2002) Mammary gland development in adult mice requires epithelial and stromal estrogen receptor alpha. Endocrinology 143(6):2357–2365PubMedGoogle Scholar
  21. 21.
    Margolis RN, Evans RM, O’Malley BW (2005) The Nuclear Receptor Signaling Atlas: development of a functional atlas of nuclear receptors. Mol Endocrinol 19(10):2433–2436PubMedCrossRefGoogle Scholar
  22. 22.
    Lim E, Vaillant F, Wu D, Forrest NC, Pal B, Hart AH, Asselin-Labat ML, Gyorki DE, Ward T, Partanen A, Feleppa F, Huschtscha LI, Thorne HJ, Fox SB, Yan M, French JD, Brown MA, Smyth GK, Visvader JE, Lindeman GJ (2009) Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 15(8):907–913PubMedCrossRefGoogle Scholar
  23. 23.
    Yamaguchi Y, Takei H, Suemasu K, Kobayashi Y, Kurosumi M, Harada N, Hayashi S (2005) Tumor-stromal interaction through the estrogen-signaling pathway in human breast cancer. Cancer Res 65(11):4653–4662PubMedCrossRefGoogle Scholar
  24. 24.
    Miki Y, Suzuki T, Tazawa C, Yamaguchi Y, Kitada K, Honma S, Moriya T, Hirakawa H, Evans DB, Hayashi S, Ohuchi N, Sasano H (2007) Aromatase localization in human breast cancer tissues: possible interactions between intratumoral stromal and parenchymal cells. Cancer Res 67(8):3945–3954PubMedCrossRefGoogle Scholar
  25. 25.
    Knower KC, To SQ, Takagi K, Miki Y, Sasano H, Simpson ER, Clyne CD (2012) Melatonin suppresses aromatase expression and activity in breast cancer associated fibroblasts. Breast Cancer Res Treat 132(2):765–771PubMedCrossRefGoogle Scholar
  26. 26.
    Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, Carey VJ, Richardson AL, Weinberg RA (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121(3):335–348PubMedCrossRefGoogle Scholar
  27. 27.
    Soon PS, Kim E, Pon CK, Gill AJ, Moore K, Spillane AJ, Benn DE, Baxter RC (2013) Breast cancer-associated fibroblasts induce epithelial-to-mesenchymal transition in breast cancer cells. Endocr Relat Cancer 20(1):1–12PubMedCrossRefGoogle Scholar
  28. 28.
    Alexiadis M, Eriksson N, Jamieson S, Davis M, Drummond AE, Chu S, Clyne CD, Muscat GE, Fuller PJ (2011) Nuclear receptor profiling of ovarian granulosa cell tumors. Horm Cancer 2(3):157–169PubMedCrossRefGoogle Scholar
  29. 29.
    Mote PA, Balleine RL, McGowan EM, Clarke CL (1999) Colocalization of progesterone receptors A and B by dual immunofluorescent histochemistry in human endometrium during the menstrual cycle. J Clin Endocrinol Metab 84(8):2963–2971PubMedGoogle Scholar
  30. 30.
    Mote PA, Leary JA, Avery KA, Sandelin K, Chenevix-Trench G, Kirk JA, Clarke CL (2004) Germ-line mutations in BRCA1 or BRCA2 in the normal breast are associated with altered expression of estrogen-responsive proteins and the predominance of progesterone receptor A. Genes Chromosomes Cancer 39(3):236–248PubMedCrossRefGoogle Scholar
  31. 31.
    Haviv I, Polyak K, Qiu W, Hu M, Campbell I (2009) Origin of carcinoma associated fibroblasts. Cell Cycle 8(4):589–595PubMedCrossRefGoogle Scholar
  32. 32.
    Zeisberg EM, Potenta S, Xie L, Zeisberg M, Kalluri R (2007) Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res 67(21):10123–10128PubMedCrossRefGoogle Scholar
  33. 33.
    Mishra PJ, Mishra PJ, Humeniuk R, Medina DJ, Alexe G, Mesirov JP, Ganesan S, Glod JW, Banerjee D (2008) Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res 68(11):4331–4339PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Bergamaschi A, Tagliabue E, Sorlie T, Naume B, Triulzi T, Orlandi R, Russnes HG, Nesland JM, Tammi R, Auvinen P, Kosma VM, Menard S, Borresen-Dale AL (2008) Extracellular matrix signature identifies breast cancer subgroups with different clinical outcome. J Pathol 214(3):357–367PubMedCrossRefGoogle Scholar
  35. 35.
    Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H, Chen H, Omeroglu G, Meterissian S, Omeroglu A, Hallett M, Park M (2008) Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 14(5):518–527PubMedCrossRefGoogle Scholar
  36. 36.
    Crandall DL, Busler DE, Novak TJ, Weber RV, Kral JG (1998) Identification of estrogen receptor beta RNA in human breast and abdominal subcutaneous adipose tissue. Biochem Biophys Res Commun 248(3):523–526PubMedCrossRefGoogle Scholar
  37. 37.
    Palmieri C, Saji S, Sakaguchi H, Cheng G, Sunters A, O’Hare MJ, Warner M, Gustafsson JA, Coombes RC, Lam EW (2004) The expression of oestrogen receptor (ER)-beta and its variants, but not ERalpha, in adult human mammary fibroblasts. J Mol Endocrinol 33(1):35–50PubMedCrossRefGoogle Scholar
  38. 38.
    Ijichi N, Shigekawa T, Ikeda K, Horie-Inoue K, Fujimura T, Tsuda H, Osaki A, Saeki T, Inoue S (2011) Estrogen-related receptor gamma modulates cell proliferation and estrogen signaling in breast cancer. J Steroid Biochem Mol Biol 123(1–2):1–7PubMedCrossRefGoogle Scholar
  39. 39.
    Miki Y, Clyne CD, Suzuki T, Moriya T, Shibuya R, Nakamura Y, Ishida T, Yabuki N, Kitada K, Hayashi S, Sasano H (2006) Immunolocalization of liver receptor homologue-1 (LRH-1) in human breast carcinoma: possible regulator of in situ steroidogenesis. Cancer Lett 244(1):24–33PubMedCrossRefGoogle Scholar
  40. 40.
    Zhou J, Suzuki T, Kovacic A, Saito R, Miki Y, Ishida T, Moriya T, Simpson ER, Sasano H, Clyne CD (2005) Interactions between prostaglandin E(2), liver receptor homologue-1, and aromatase in breast cancer. Cancer Res 65(2):657–663PubMedGoogle Scholar
  41. 41.
    Lazarus KA, Zhao Z, Knower KC, To SQ, Chand AL, Clyne CD (2013) Oestradiol reduces Liver Receptor Homolog-1 mRNA transcript stability in breast cancer cell lines. Biochem Biophys Res Commun 438(3):533–539PubMedCrossRefGoogle Scholar
  42. 42.
    Chand AL, Wijayakumara DD, Knower KC, Herridge KA, Howard TL, Lazarus KA, Clyne CD (2012) The orphan nuclear receptor LRH-1 and ERalpha activate GREB1 expression to induce breast cancer cell proliferation. PLoS One 7(2):e31593PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Chand AL, Herridge KA, Thompson EW, Clyne CD (2010) The orphan nuclear receptor LRH-1 promotes breast cancer motility and invasion. Endocr Relat Cancer 17(4):965–975PubMedCrossRefGoogle Scholar
  44. 44.
    Thiruchelvam PT, Lai CF, Hua H, Thomas RS, Hurtado A, Hudson W, Bayly AR, Kyle FJ, Periyasamy M, Photiou A, Spivey AC, Ortlund EA, Whitby RJ, Carroll JS, Coombes RC, Buluwela L, Ali S (2011) The liver receptor homolog-1 regulates estrogen receptor expression in breast cancer cells. Breast Cancer Res Treat 127(2):385–396PubMedCrossRefGoogle Scholar
  45. 45.
    Rey J, Hu H, Kyle F, Lai CF, Buluwela L, Coombes RC, Ortlund EA, Ali S, Snyder JP, Barrett AG (2012) Discovery of a new class of liver receptor Homolog-1 (LRH-1) Antagonists: virtual screening, synthesis and biological evaluation. ChemMedChem. doi: 10.1002/cmdc.201200307 PubMedGoogle Scholar
  46. 46.
    Lazarus KA, Wijayakumara D, Chand AL, Simpson ER, Clyne CD (2012) Therapeutic potential of Liver Receptor Homolog-1 modulators. J Steroid Biochem Mol Biol 130(3-5):138–146PubMedCrossRefGoogle Scholar
  47. 47.
    Chand AL, Herridge KA, Howard TL, Simpson ER, Clyne CD (2011) Tissue-specific regulation of aromatase promoter II by the orphan nuclear receptor LRH-1 in breast adipose stromal fibroblasts. Steroids 76(8):741–744PubMedCrossRefGoogle Scholar
  48. 48.
    Clyne CD, Kovacic A, Speed CJ, Zhou J, Pezzi V, Simpson ER (2004) Regulation of aromatase expression by the nuclear receptor LRH-1 in adipose tissue. Mol Cell Endocrinol 215(1–2):39–44PubMedCrossRefGoogle Scholar
  49. 49.
    Clyne CD, Speed CJ, Zhou J, Simpson ER (2002) Liver receptor homologue-1 (LRH-1) regulates expression of aromatase in preadipocytes. J Biol Chem 277(23):20591–20597PubMedCrossRefGoogle Scholar
  50. 50.
    Sherman MH, Downes M, Evans RM (2012) Nuclear receptors as modulators of the tumor microenvironment. Cancer Prev Res (Phila) 5(1):3–10CrossRefGoogle Scholar
  51. 51.
    Kaneshige M, Kaneshige K, Zhu X, Dace A, Garrett L, Carter TA, Kazlauskaite R, Pankratz DG, Wynshaw-Boris A, Refetoff S, Weintraub B, Willingham MC, Barlow C, Cheng S (2000) Mice with a targeted mutation in the thyroid hormone beta receptor gene exhibit impaired growth and resistance to thyroid hormone. Proc Natl Acad Sci USA 97(24):13209–13214PubMedCrossRefGoogle Scholar
  52. 52.
    Parrilla R, Mixson AJ, McPherson JA, McClaskey JH, Weintraub BD (1991) Characterization of seven novel mutations of the c-erbA beta gene in unrelated kindreds with generalized thyroid hormone resistance. Evidence for two “hot spot” regions of the ligand binding domain. J Clin Invest 88(6):2123–2130PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Meier CA, Dickstein BM, Ashizawa K, McClaskey JH, Muchmore P, Ransom SC, Menke JB, Hao EH, Usala SJ, Bercu BB et al (1992) Variable transcriptional activity and ligand binding of mutant beta 1 3,5,3′-triiodothyronine receptors from four families with generalized resistance to thyroid hormone. Mol Endocrinol 6(2):248–258PubMedGoogle Scholar
  54. 54.
    Guigon CJ, Kim DW, Willingham MC, Cheng SY (2011) Mutation of thyroid hormone receptor-beta in mice predisposes to the development of mammary tumors. Oncogene 30(30):3381–3390PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Silva JM, Dominguez G, Gonzalez-Sancho JM, Garcia JM, Silva J, Garcia-Andrade C, Navarro A, Munoz A, Bonilla F (2002) Expression of thyroid hormone receptor/erbA genes is altered in human breast cancer. Oncogene 21(27):4307–4316PubMedCrossRefGoogle Scholar
  56. 56.
    Hamza MS, Pott S, Vega VB, Thomsen JS, Kandhadayar GS, Ng PW, Chiu KP, Pettersson S, Wei CL, Ruan Y, Liu ET (2009) De novo identification of PPARgamma/RXR binding sites and direct targets during adipogenesis. PLoS One 4(3):e4907PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Tikoo K, Kumar P, Gupta J (2009) Rosiglitazone synergizes anticancer activity of cisplatin and reduces its nephrotoxicity in 7, 12-dimethyl benz{a}anthracene (DMBA) induced breast cancer rats. BMC Cancer 9:107PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Skelhorne-Gross G, Reid AL, Apostoli AJ, Di Lena MA, Rubino RE, Peterson NT, Schneider M, SenGupta SK, Gonzalez FJ, Nicol CJ (2012) Stromal adipocyte PPARgamma protects against breast tumorigenesis. Carcinogenesis 33(7):1412–1420PubMedCrossRefGoogle Scholar
  59. 59.
    Papadaki I, Mylona E, Giannopoulou I, Markaki S, Keramopoulos A, Nakopoulou L (2005) PPARgamma expression in breast cancer: clinical value and correlation with ERbeta. Histopathology 46(1):37–42PubMedCrossRefGoogle Scholar
  60. 60.
    Jiang WG, Douglas-Jones A, Mansel RE (2003) Expression of peroxisome-proliferator activated receptor-gamma (PPARgamma) and the PPARgamma co-activator, PGC-1, in human breast cancer correlates with clinical outcomes. Int J Cancer 106(5):752–757PubMedCrossRefGoogle Scholar
  61. 61.
    Rubin GL, Zhao Y, Kalus AM, Simpson ER (2000) Peroxisome proliferator-activated receptor gamma ligands inhibit estrogen biosynthesis in human breast adipose tissue: possible implications for breast cancer therapy. Cancer Res 60(6):1604–1608PubMedGoogle Scholar
  62. 62.
    Catalano S, Pezzi V, Chimento A, Giordano C, Carpino A, Young M, McPhaul MJ, Ando S (2003) Triiodothyronine decreases the activity of the proximal promoter (PII) of the aromatase gene in the mouse Sertoli cell line, TM4. Mol Endocrinol 17(5):923–934PubMedCrossRefGoogle Scholar
  63. 63.
    Krishnan AV, Swami S, Peng L, Wang J, Moreno J, Feldman D (2010) Tissue-selective regulation of aromatase expression by calcitriol: implications for breast cancer therapy. Endocrinology 151(1):32–42PubMedCrossRefGoogle Scholar
  64. 64.
    Swami S, Krishnan AV, Wang JY, Jensen K, Peng L, Albertelli MA, Feldman D (2011) Inhibitory effects of calcitriol on the growth of MCF-7 breast cancer xenografts in nude mice: selective modulation of aromatase expression in vivo. Horm Cancer 2(3):190–202PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Wang ZJ, Jeffs B, Ito M, Achermann JC, Yu RN, Hales DB, Jameson JL (2001) Aromatase (Cyp19) expression is up-regulated by targeted disruption of Dax1. Proc Natl Acad Sci USA 98(14):7988–7993PubMedCrossRefGoogle Scholar
  66. 66.
    Gurates B, Sebastian S, Yang S, Zhou J, Tamura M, Fang Z, Suzuki T, Sasano H, Bulun SE (2002) WT1 and DAX-1 inhibit aromatase P450 expression in human endometrial and endometriotic stromal cells. J Clin Endocrinol Metab 87(9):4369–4377PubMedCrossRefGoogle Scholar
  67. 67.
    Gurates B, Amsterdam A, Tamura M, Yang S, Zhou J, Fang Z, Amin S, Sebastian S, Bulun SE (2003) WT1 and DAX-1 regulate SF-1-mediated human P450arom gene expression in gonadal cells. Mol Cell Endocrinol 208(1–2):61–75PubMedCrossRefGoogle Scholar
  68. 68.
    Lanzino M, Maris P, Sirianni R, Barone I, Casaburi I, Chimento A, Giordano C, Morelli C, Sisci D, Rizza P, Bonofiglio D, Catalano S, Ando S (2013) DAX-1, as an androgen-target gene, inhibits aromatase expression: a novel mechanism blocking estrogen-dependent breast cancer cell proliferation. Cell Death Dis 4:e724PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Delerive P, Monte D, Dubois G, Trottein F, Fruchart-Najib J, Mariani J, Fruchart JC, Staels B (2001) The orphan nuclear receptor ROR alpha is a negative regulator of the inflammatory response. EMBO Rep 2(1):42–48PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Xiong G, Wang C, Evers BM, Zhou BP, Xu R (2012) RORalpha suppresses breast tumor invasion by inducing SEMA3F expression. Cancer Res 72(7):1728–1739PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Moretti RM, Montagnani Marelli M, Motta M, Limonta P (2002) Role of the orphan nuclear receptor ROR alpha in the control of the metastatic behavior of androgen-independent prostate cancer cells. Oncol Rep 9(5):1139–1143PubMedGoogle Scholar
  72. 72.
    Jetten AM, Ueda E (2002) Retinoid-related orphan receptors (RORs): roles in cell survival, differentiation and disease. Cell Death Differ 9(11):1167–1171PubMedCrossRefGoogle Scholar
  73. 73.
    Beer TM, Myrthue A (2004) Calcitriol in cancer treatment: from the lab to the clinic. Mol Cancer Ther 3(3):373–381PubMedGoogle Scholar
  74. 74.
    Colston KW, Hansen CM (2002) Mechanisms implicated in the growth regulatory effects of vitamin D in breast cancer. Endocr Relat Cancer 9(1):45–59PubMedCrossRefGoogle Scholar
  75. 75.
    Welsh J (2007) Vitamin D and prevention of breast cancer. Acta Pharmacol Sin 28(9):1373–1382PubMedCrossRefGoogle Scholar
  76. 76.
    Zinser G, Packman K, Welsh J (2002) Vitamin D(3) receptor ablation alters mammary gland morphogenesis. Development 129(13):3067–3076PubMedGoogle Scholar
  77. 77.
    Horard B, Vanacker JM (2003) Estrogen receptor-related receptors: orphan receptors desperately seeking a ligand. J Mol Endocrinol 31(3):349–357PubMedCrossRefGoogle Scholar
  78. 78.
    Deblois G, Giguere V (2013) Oestrogen-related receptors in breast cancer: control of cellular metabolism and beyond. Nat Rev Cancer 13(1):27–36PubMedCrossRefGoogle Scholar
  79. 79.
    Suzuki T, Miki Y, Moriya T, Shimada N, Ishida T, Hirakawa H, Ohuchi N, Sasano H (2004) Estrogen-related receptor alpha in human breast carcinoma as a potent prognostic factor. Cancer Res 64(13):4670–4676PubMedCrossRefGoogle Scholar
  80. 80.
    Chang CY, Kazmin D, Jasper JS, Kunder R, Zuercher WJ, McDonnell DP (2011) The metabolic regulator ERRalpha, a downstream target of HER2/IGF-1R, as a therapeutic target in breast cancer. Cancer Cell 20(4):500–510PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Tremblay GB, Kunath T, Bergeron D, Lapointe L, Champigny C, Bader JA, Rossant J, Giguere V (2001) Diethylstilbestrol regulates trophoblast stem cell differentiation as a ligand of orphan nuclear receptor ERR beta. Genes Dev 15(7):833–838PubMedCrossRefGoogle Scholar
  82. 82.
    Chen J, Nathans J (2007) Estrogen-related receptor beta/NR3B2 controls epithelial cell fate and endolymph production by the stria vascularis. Dev Cell 13(3):325–337PubMedCrossRefGoogle Scholar
  83. 83.
    Feng B, Jiang J, Kraus P, Ng JH, Heng JC, Chan YS, Yaw LP, Zhang W, Loh YH, Han J, Vega VB, Cacheux-Rataboul V, Lim B, Lufkin T, Ng HH (2009) Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb. Nat Cell Biol 11(2):197–203PubMedCrossRefGoogle Scholar
  84. 84.
    Ludbrook LM, Bernard P, Bagheri-Fam S, Ryan J, Sekido R, Wilhelm D, Lovell-Badge R, Harley VR (2012) Excess DAX1 leads to XY ovotesticular disorder of sex development (DSD) in mice by inhibiting steroidogenic factor-1 (SF1) activation of the testis enhancer of SRY-box-9 (Sox9). Endocrinology 153(4):1948–1958PubMedCrossRefGoogle Scholar
  85. 85.
    Sablin EP, Woods A, Krylova IN, Hwang P, Ingraham HA, Fletterick RJ (2008) The structure of corepressor Dax-1 bound to its target nuclear receptor LRH-1. Proc Natl Acad Sci USA 105(47):18390–18395PubMedCrossRefGoogle Scholar
  86. 86.
    Suzuki T, Kasahara M, Yoshioka H, Morohashi K, Umesono K (2003) LXXLL-related motifs in Dax-1 have target specificity for the orphan nuclear receptors Ad4BP/SF-1 and LRH-1. Mol Cell Biol 23(1):238–249PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Robbins P, Pinder S, de Klerk N, Dawkins H, Harvey J, Sterrett G, Ellis I, Elston C (1995) Histological grading of breast carcinomas: a study of interobserver agreement. Hum Pathol 26(8):873–879PubMedCrossRefGoogle Scholar
  88. 88.
    Allred DC, Harvey JM, Berardo M, Clark GM (1998) Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Mod Pathol 11(2):155–168PubMedGoogle Scholar
  89. 89.
    Wolff AC, Hammond ME, Schwartz JN, Hagerty KL, Allred DC, Cote RJ, Dowsett M, Fitzgibbons PL, Hanna WM, Langer A, McShane LM, Paik S, Pegram MD, Perez EA, Press MF, Rhodes A, Sturgeon C, Taube SE, Tubbs R, Vance GH, van de Vijver M, Wheeler TM, Hayes DF (2007) American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. Arch Pathol Lab Med 131(1):18–43PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Kevin C. Knower
    • 1
  • Ashwini L. Chand
    • 1
  • Natalie Eriksson
    • 2
  • Kiyoshi Takagi
    • 3
  • Yasuhiro Miki
    • 3
  • Hironobu Sasano
    • 3
  • Jane E. Visvader
    • 4
    • 5
  • Geoffrey J. Lindeman
    • 4
    • 6
  • John W. Funder
    • 1
  • Peter J. Fuller
    • 1
  • Evan R. Simpson
    • 1
  • Wayne D. Tilley
    • 7
  • Peter J. Leedman
    • 8
  • J. Dinny Graham
    • 9
  • George E. O. Muscat
    • 2
  • Christine L. Clarke
    • 9
  • Colin D. Clyne
    • 1
    • 10
  1. 1.Prince Henry’s Institute of Medical ResearchClaytonAustralia
  2. 2.Institute for Molecular BiosciencesUniversity of QueenslandBrisbaneAustralia
  3. 3.Department of PathologyTohoku University Graduate School of MedicineSendaiJapan
  4. 4.The Walter and Eliza Hall Institute of Medical Research (WEHI)ParkvilleAustralia
  5. 5.Department of Medical BiologyThe University of MelbourneParkvilleAustralia
  6. 6.Department of MedicineThe University of MelbourneParkvilleAustralia
  7. 7.Dame Roma Mitchell Cancer Research Laboratories, Discipline of Medicine, Hanson InstituteUniversity of AdelaideAdelaideAustralia
  8. 8.Laboratory for Cancer Medicine, Centre for Medical Research, Western Australian Institute for Medical Research and School of Medicine and PharmacologyThe University of Western AustraliaPerthAustralia
  9. 9.Westmead Millennium InstituteUniversity of SydneyWestmeadAustralia
  10. 10.Department of Molecular Biology and BiochemistryMonash UniversityClaytonAustralia

Personalised recommendations