Advertisement

Breast Cancer Research and Treatment

, Volume 140, Issue 1, pp 93–104 | Cite as

Biomarker expression and St Gallen molecular subtype classification in primary tumours, synchronous lymph node metastases and asynchronous relapses in primary breast cancer patients with 10 years’ follow-up

  • Anna-Karin Falck
  • Pär-Ola Bendahl
  • Gunilla Chebil
  • Hans Olsson
  • Mårten Fernö
  • Lisa Rydén
Clinical Trial

Abstract

Molecular profiles of asynchronous breast cancer metastases are of clinical relevance to individual patients’ treatment, whereas the role of profiles in synchronous lymph node metastases is not defined. The present study aimed to assess individual biomarkers and molecular subtypes according to the St Gallen classification in primary breast tumours, synchronous lymph node metastases and asynchronous relapses and relate the results to 10-year breast cancer mortality (BCM). Tissue microarrays were constructed from archived tissue blocks of primary tumours (N = 524), synchronous lymph node metastases (N = 147) and asynchronous relapses (N = 36). The samples were evaluated by two independent pathologists according to oestrogen receptor (ER), progesterone receptor (PR), Ki67 and human epidermal growth factor receptor 2 (HER2) by immunohistochemistry and in situ hybridisation. The expression of biomarkers and molecular subtypes in the primary tumour was compared with that in the synchronous lymph node metastases and relapses, and related to 10-year BCM. Discordances were found between primary tumours and relapses (ER: p = 0.006, PR: p = 0.04, Ki67: p = 0.02, HER2: p = 0.02, St Gallen subtypes: p = 0.07) but not between primary tumours and metastatic lymph node. Prognostic information was gained by the molecular subtype classification in primary tumours and nodal metastases; triple negative subtype had the highest BCM compared with the luminal A subtype (primary tumours: HR 4.0; 95 % CI 2.0–8.2, p < 0.001, lymph node metastases: HR 3.5; 95 % CI 1.3–9.7, p = 0.02). When a shift in subtype inherence between primary tumour and metastatic lymph node was identified, the prognosis seemed to follow the subtype of the lymph node. Molecular profiles are not stable throughout tumour progression in breast cancer. Prognostic information for individual patients appears to be available from the analysis of biomarker expression in synchronous metastatic lymph nodes. The study supports biomarker analysis also in asynchronous relapses.

Keywords

Breast cancer Lymph node metastases Relapse Prognosis Tumour progression St Gallen molecular subtypes 

Notes

Acknowledgments

The study was supported by funds from the Swedish Breast Cancer Organisation (BRO), the Swedish Cancer Society, Swedish Research Council, the Gunnar Nilsson Cancer Foundation, the Mrs. Berta Kamprad Foundation, Stig and Ragna Gorthons Stiftelse, Skåne County Council’s Research and Development Foundation and Governmental Funding of Clinical Research within the National Health Service (ALF). The authors would like to acknowledge Kristina Lövgren, Division of Oncology, Department of Clinical Sciences Lund, for technical support in the construction of TMAs and Sara Baker, Division of Oncology, Department of Clinical Sciences Lund, for technical support in the scanning procedure.

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Sleeman JP, Nazarenko I, Thiele W (2011) Do all roads lead to Rome? Routes to metastasis development. Int J Cancer 128(11):2511–2526PubMedCrossRefGoogle Scholar
  2. 2.
    Klein CA (2009) Parallel progression of primary tumours and metastases. Nat Rev Cancer 9(4):302–312PubMedCrossRefGoogle Scholar
  3. 3.
    Stoecklein NH, Klein CA (2010) Genetic disparity between primary tumours, disseminated tumour cells, and manifest metastasis. Int J Cancer 126(3):589–598PubMedCrossRefGoogle Scholar
  4. 4.
    Strien L, Leidenius M, von Smitten K, Heikkila P (2010) Concordance between HER-2 and steroid hormone receptor expression between primary breast cancer, sentinel node metastases, and isolated tumor cells. Pathol Res Pract 206(4):253–258PubMedCrossRefGoogle Scholar
  5. 5.
    Jensen JD, Knoop A, Ewertz M, Laenkholm AV (2012) ER, HER2, and TOP2A expression in primary tumor, synchronous axillary nodes, and asynchronous metastases in breast cancer. Breast Cancer Res Treat 132(2):511–521PubMedCrossRefGoogle Scholar
  6. 6.
    Markiewicz A, Ahrends T, Welnicka-Jaskiewicz M, Seroczynska B, Skokowski J, Jaskiewicz J, Szade J, Biernat W, Zaczek AJ (2012) Expression of epithelial to mesenchymal transition-related markers in lymph node metastases as a surrogate for primary tumor metastatic potential in breast cancer. J Transl Med 10:226PubMedCrossRefGoogle Scholar
  7. 7.
    Falck AK, Ferno M, Bendahl PO, Ryden L (2010) Does analysis of biomarkers in tumor cells in lymph node metastases give additional prognostic information in primary breast cancer? World J Surg 34(7):1434–1441PubMedCrossRefGoogle Scholar
  8. 8.
    Amir E, Miller N, Geddie W, Freedman O, Kassam F, Simmons C, Oldfield M, Dranitsaris G, Tomlinson G, Laupacis A et al (2012) Prospective study evaluating the impact of tissue confirmation of metastatic disease in patients with breast cancer. J Clin Oncol 30(6):587–592PubMedCrossRefGoogle Scholar
  9. 9.
    Thompson AM, Jordan LB, Quinlan P, Anderson E, Skene A, Dewar JA, Purdie CA (2010) Prospective comparison of switches in biomarker status between primary and recurrent breast cancer: the Breast Recurrence In Tissues Study (BRITS). Breast Cancer Res 12(6):R92PubMedCrossRefGoogle Scholar
  10. 10.
    Lindstrom LS, Karlsson E, Wilking UM, Johansson U, Hartman J, Lidbrink EK, Hatschek T, Skoog L, Bergh J (2012) Clinically used breast cancer markers such as estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 are unstable throughout tumor progression. J Clin Oncol 30(21):2601–2608PubMedCrossRefGoogle Scholar
  11. 11.
    Houssami N, Macaskill P, Balleine RL, Bilous M, Pegram MD (2011) HER2 discordance between primary breast cancer and its paired metastasis: tumor biology or test artefact? Insights through meta-analysis. Breast Cancer Res Treat 129(3):659–674PubMedCrossRefGoogle Scholar
  12. 12.
    (Swebcg) SBCG: National guidelines (2012)Google Scholar
  13. 13.
    Davies C, Godwin J, Gray R, Clarke M, Cutter D, Darby S, McGale P, Pan HC, Taylor C, Wang YC et al (2011) Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet 378(9793):771–784PubMedGoogle Scholar
  14. 14.
    Yin W, Jiang Y, Shen Z, Shao Z, Lu J (2011) Trastuzumab in the adjuvant treatment of HER2-positive early breast cancer patients: a meta-analysis of published randomized controlled trials. PLoS ONE 6(6):e21030PubMedCrossRefGoogle Scholar
  15. 15.
    Dowsett M, Procter M, McCaskill-Stevens W, de Azambuja E, Dafni U, Rueschoff J, Jordan B, Dolci S, Abramovitz M, Stoss O et al (2009) Disease-free survival according to degree of HER2 amplification for patients treated with adjuvant chemotherapy with or without 1 year of trastuzumab: the HERA Trial. J Clin Oncol 27(18):2962–2969PubMedCrossRefGoogle Scholar
  16. 16.
    Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA et al (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752PubMedCrossRefGoogle Scholar
  17. 17.
    Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98(19):10869–10874PubMedCrossRefGoogle Scholar
  18. 18.
    Blows FM, Driver KE, Schmidt MK, Broeks A, van Leeuwen FE, Wesseling J, Cheang MC, Gelmon K, Nielsen TO, Blomqvist C et al (2010) Subtyping of breast cancer by immunohistochemistry to investigate a relationship between subtype and short and long term survival: a collaborative analysis of data for 10,159 cases from 12 studies. PLoS Med 7(5):e1000279PubMedCrossRefGoogle Scholar
  19. 19.
    Callagy G, Cattaneo E, Daigo Y, Happerfield L, Bobrow LG, Pharoah PD, Caldas C (2003) Molecular classification of breast carcinomas using tissue microarrays. Diagn Mol Pathol 12(1):27–34PubMedCrossRefGoogle Scholar
  20. 20.
    Cheang MC, Chia SK, Voduc D, Gao D, Leung S, Snider J, Watson M, Davies S, Bernard PS, Parker JS et al (2009) Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst 101(10):736–750PubMedCrossRefGoogle Scholar
  21. 21.
    Nielsen TO, Hsu FD, Jensen K, Cheang M, Karaca G, Hu Z, Hernandez-Boussard T, Livasy C, Cowan D, Dressler L et al (2004) Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res 10(16):5367–5374PubMedCrossRefGoogle Scholar
  22. 22.
    van Diest PJ, van der Wall E, Baak JP (2004) Prognostic value of proliferation in invasive breast cancer: a review. J Clin Pathol 57(7):675–681PubMedCrossRefGoogle Scholar
  23. 23.
    Dowsett M, Nielsen TO, A’Hern R, Bartlett J, Coombes RC, Cuzick J, Ellis M, Henry NL, Hugh JC, Lively T et al (2011) Assessment of Ki67 in breast cancer: recommendations from the International Ki67 in Breast Cancer working group. J Natl Cancer Inst 103(22):1656–1664PubMedCrossRefGoogle Scholar
  24. 24.
    Guiu S, Michiels S, Andre F, Cortes J, Denkert C, Di Leo A, Hennessy BT, Sorlie T, Sotiriou C, Turner N et al (2012) Molecular subclasses of breast cancer: how do we define them? The IMPAKT 2012 Working Group Statement. Ann Oncol 23(12):2997–3006PubMedCrossRefGoogle Scholar
  25. 25.
    Brouckaert O, Laenen A, Vanderhaegen J, Wildiers H, Leunen K, Amant F, Berteloot P, Smeets A, Paridaens R, Christiaens MR et al (2012) Applying the 2011 St Gallen panel of prognostic markers on a large single hospital cohort of consecutively treated primary operable breast cancers. Ann Oncol 23(10):2578–2584PubMedCrossRefGoogle Scholar
  26. 26.
    Falck AK, Bendahl PO, Ingvar C, Isola J, Jonsson PE, Lindblom P, Lovgren K, Rennstam K, Ferno M, Ryden L (2012) Analysis of and prognostic information from disseminated tumour cells in bone marrow in primary breast cancer: a prospective observational study. BMC Cancer 12:403PubMedCrossRefGoogle Scholar
  27. 27.
    Hammond ME, Hayes DF, Wolff AC, Mangu PB, Temin S (2010) American society of clinical oncology/college of American pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Oncol Pract 6(4):195–197PubMedCrossRefGoogle Scholar
  28. 28.
    Hammond ME, Hayes DF, Wolff AC (2011) Clinical Notice for American Society of Clinical Oncology-College of American Pathologists guideline recommendations on ER/PgR and HER2 testing in breast cancer. J Clin Oncol 29(15):e458PubMedCrossRefGoogle Scholar
  29. 29.
    Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thurlimann B, Senn HJ (2011) Strategies for subtypes—dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol 22(8):1736–1747PubMedCrossRefGoogle Scholar
  30. 30.
    Jatoi I, Hilsenbeck SG, Clark GM, Osborne CK (1999) Significance of axillary lymph node metastasis in primary breast cancer. J Clin Oncol 17(8):2334–2340PubMedGoogle Scholar
  31. 31.
    Joensuu H, Pylkkanen L, Toikkanen S (1998) Long-term survival in node-positive breast cancer treated by locoregional therapy alone. Br J Cancer 78(6):795–799PubMedCrossRefGoogle Scholar
  32. 32.
    D’Andrea MR, Limiti MR, Bari M, Zambenedetti P, Montagutti A, Ricci F, Pappagallo GL, Sartori D, Vinante O, Mingazzini PL (2007) Correlation between genetic and biological aspects in primary non-metastatic breast cancers and corresponding synchronous axillary lymph node metastasis. Breast Cancer Res Treat 101(3):279–284PubMedCrossRefGoogle Scholar
  33. 33.
    Feng Y, Sun B, Li X, Zhang L, Niu Y, Xiao C, Ning L, Fang Z, Wang Y, Cheng J et al (2007) Differentially expressed genes between primary cancer and paired lymph node metastases predict clinical outcome of node-positive breast cancer patients. Breast Cancer Res Treat 103(3):319–329PubMedCrossRefGoogle Scholar
  34. 34.
    Liedtke C, Broglio K, Moulder S, Hsu L, Kau SW, Symmans WF, Albarracin C, Meric-Bernstam F, Woodward W, Theriault RL et al (2009) Prognostic impact of discordance between triple-receptor measurements in primary and recurrent breast cancer. Ann Oncol 20(12):1953–1958PubMedCrossRefGoogle Scholar
  35. 35.
    Simmons C, Miller N, Geddie W, Gianfelice D, Oldfield M, Dranitsaris G, Clemons MJ (2009) Does confirmatory tumor biopsy alter the management of breast cancer patients with distant metastases? Ann Oncol 20(9):1499–1504PubMedCrossRefGoogle Scholar
  36. 36.
    Marusyk A, Polyak K (2010) Tumor heterogeneity: causes and consequences. Biochim Biophys Acta 1805(1):105–117PubMedGoogle Scholar
  37. 37.
    Kuukasjarvi T, Karhu R, Tanner M, Kahkonen M, Schaffer A, Nupponen N, Pennanen S, Kallioniemi A, Kallioniemi OP, Isola J (1997) Genetic heterogeneity and clonal evolution underlying development of asynchronous metastasis in human breast cancer. Cancer Res 57(8):1597–1604PubMedGoogle Scholar
  38. 38.
    Torres L, Ribeiro FR, Pandis N, Andersen JA, Heim S, Teixeira MR (2007) Intratumor genomic heterogeneity in breast cancer with clonal divergence between primary carcinomas and lymph node metastases. Breast Cancer Res Treat 102(2):143–155PubMedCrossRefGoogle Scholar
  39. 39.
    Becker TE, Ellsworth RE, Deyarmin B, Patney HL, Jordan RM, Hooke JA, Shriver CD, Ellsworth DL (2008) The genomic heritage of lymph node metastases: implications for clinical management of patients with breast cancer. Ann Surg Oncol 15(4):1056–1063PubMedCrossRefGoogle Scholar
  40. 40.
    Sleeman JP, Cady B, Pantel K (2012) The connectivity of lymphogenous and hematogenous tumor cell dissemination: biological insights and clinical implications. Clin Exp Metastasis 29(7):737–746CrossRefGoogle Scholar
  41. 41.
    Camp RL, Charette LA, Rimm DL (2000) Validation of tissue microarray technology in breast carcinoma. Lab Invest 80(12):1943–1949PubMedCrossRefGoogle Scholar
  42. 42.
    Wolff AC, Hammond ME, Schwartz JN, Hagerty KL, Allred DC, Cote RJ, Dowsett M, Fitzgibbons PL, Hanna WM, Langer A et al (2007) American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. Arch Pathol Lab Med 131(1):18–43PubMedGoogle Scholar
  43. 43.
    Klintman M, Bendahl PO, Grabau D, Lovgren K, Malmstrom P, Ferno M (2010) The prognostic value of Ki67 is dependent on estrogen receptor status and histological grade in premenopausal patients with node-negative breast cancer. Mod Pathol 23(2):251–259PubMedCrossRefGoogle Scholar
  44. 44.
    Romero Q, Bendahl PO, Klintman M, Loman N, Ingvar C, Ryden L, Rose C, Grabau D, Borgquist S (2011) Ki67 proliferation in core biopsies versus surgical samples—a model for neo-adjuvant breast cancer studies. BMC Cancer 11:341PubMedCrossRefGoogle Scholar
  45. 45.

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Anna-Karin Falck
    • 1
    • 2
  • Pär-Ola Bendahl
    • 3
  • Gunilla Chebil
    • 3
  • Hans Olsson
    • 4
  • Mårten Fernö
    • 3
  • Lisa Rydén
    • 1
    • 5
  1. 1.Division of Surgery, Department of Clinical Sciences Lund, Skåne University HospitalLund UniversityLundSweden
  2. 2.Department of SurgeryHospital of HelsingborgHelsingborgSweden
  3. 3.Department of Clinical Sciences Lund, Barngatan 2BLund UniversityLundSweden
  4. 4.Molecular and Immunological Pathology, Department of Clinical and Experimental Medicine, Faculty of Health SciencesLinköping University, Department of Clinical Pathology and Clinical Genetics, Östergötland County CouncilLinköpingSweden
  5. 5.Department of SurgerySkåne University HospitalLundSweden

Personalised recommendations