Breast Cancer Research and Treatment

, Volume 139, Issue 3, pp 691–703 | Cite as

Metalloproteinase-disintegrin ADAM12 is associated with a breast tumor-initiating cell phenotype

  • Hui Li
  • Sara Duhachek-Muggy
  • Suzanne Dubnicka
  • Anna ZolkiewskaEmail author
Preclinical study


Members of the ADAM family of proteases have been associated with mammary tumorigenesis. Gene profiling of human breast tumors identified several intrinsic subtypes of breast cancer, which differ in terms of their basic biology, response to chemotherapy/radiation, preferential sites of metastasis, and overall patient survival. Whether or not the expression of individual ADAM proteases is linked to a particular subtype of breast cancer and whether the functions of these ADAMs are relevant to the cancer subtype have not been investigated. We analyzed several transcriptomic datasets and found that ADAM12L is specifically up-regulated in claudin-low tumors. These tumors are poorly differentiated, exhibit aggressive characteristics, have molecular signatures of epithelial-to-mesenchymal transition (EMT), and are rich in markers of breast tumor-initiating cells (BTICs). Consistently, we find that ADAM12L, but not the alternative splice variant ADAM12S, is a part of stromal, mammosphere, and EMT gene signatures, which are all associated with BTICs. In patients with estrogen receptor-negative tumors, high expression of ADAM12L, but not ADAM12S, is predictive of resistance to neoadjuvant chemotherapy. Using breast cancer cells, which express the endogenous ADAM12L and efficiently form mammospheres when plated at the density of single cell per well, we show that ADAM12L plays an important role in supporting mammosphere growth. We postulate that ADAM12L may serve as a novel marker and/or a novel therapeutic target in BTICs.


Metalloprotease Disintegrin Claudin-low tumors Tumor-initiating cells Epithelial-to-mesenchymal transition Mammospheres 



This work was supported by NIH grants R15CA151065 and R01CA172222, and Innovative Research Award from Terry C. Johnson Center for Basic Cancer Research at KSU. This is contribution 13-289-J from Kansas Agricultural Experiment Station.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10549_2013_2602_MOESM1_ESM.doc (38 kb)
Supplementary material 1 (DOC 38 kb)


  1. 1.
    Murphy G (2008) The ADAMs: signalling scissors in the tumour microenvironment. Nat Rev Cancer 8:929–941. doi: 10.1038/nrc2459 PubMedCrossRefGoogle Scholar
  2. 2.
    Duffy MJ, Mullooly M, O’Donovan N, Sukor S, Crown J, Pierce A, McGowan PM (2011) The ADAMs family of proteases: new biomarkers and therapeutic targets for cancer? Clin Proteomics 8:9. doi: 10.1186/1559-0275-8-9 PubMedCrossRefGoogle Scholar
  3. 3.
    Perou CM, Borresen-Dale AL (2011) Systems biology and genomics of breast cancer. Cold Spring Harbor Persp Biol 3(2):1–17. doi: 10.1101/cshperspect.a003293
  4. 4.
    Comprehensive molecular portraits of human breast tumours (2012) Nature 490:61-70. doi: 10.1038/nature11412 Google Scholar
  5. 5.
    Prat A, Ellis MJ, Perou CM (2012) Practical implications of gene-expression-based assays for breast oncologists. Nat Rev Clin Oncol 9:48–57. doi: 10.1038/nrclinonc.2011.178 CrossRefGoogle Scholar
  6. 6.
    Harrell JC, Prat A, Parker JS, Fan C, He X, Carey L, Anders C, Ewend M, Perou CM (2012) Genomic analysis identifies unique signatures predictive of brain, lung, and liver relapse. Breast Cancer Res Treat 132:523–535. doi: 10.1007/s10549-011-1619-7 PubMedCrossRefGoogle Scholar
  7. 7.
    Heiser LM, Sadanandam A, Kuo WL, Benz SC, Goldstein TC, Ng S, Gibb WJ, Wang NJ, Ziyad S, Tong F, Bayani N, Hu Z, Billig JI, Dueregger A, Lewis S, Jakkula L, Korkola JE, Durinck S, Pepin F, Guan Y, Purdom E, Neuvial P, Bengtsson H, Wood KW, Smith PG, Vassilev LT, Hennessy BT, Greshock J, Bachman KE, Hardwicke MA, Park JW, Marton LJ, Wolf DM, Collisson EA, Neve RM, Mills GB, Speed TP, Feiler HS, Wooster RF, Haussler D, Stuart JM, Gray JW, Spellman PT (2012) Subtype and pathway specific responses to anticancer compounds in breast cancer. Proc Natl Acad Sci USA 109:2724–2729. doi: 10.1073/pnas.1018854108 PubMedCrossRefGoogle Scholar
  8. 8.
    Kveiborg M, Albrechtsen R, Couchman JR, Wewer UM (2008) Cellular roles of ADAM12 in health and disease. Int J Biochem Cell Biol 40:1685–1702. doi: 10.1016/j.biocel.2008.01.025 PubMedCrossRefGoogle Scholar
  9. 9.
    Iba K, Albrechtsen R, Gilpin BJ, Loechel F, Wewer UM (1999) Cysteine-rich domain of human ADAM 12 (meltrin alpha) supports tumor cell adhesion. Am J Pathol 154:1489–1501 pii:S0002-9440(10)65403-XPubMedCrossRefGoogle Scholar
  10. 10.
    Bertucci F, Finetti P, Cervera N, Charafe-Jauffret E, Mamessier E, Adelaide J, Debono S, Houvenaeghel G, Maraninchi D, Viens P, Charpin C, Jacquemier J, Birnbaum D (2006) Gene expression profiling shows medullary breast cancer is a subgroup of basal breast cancers. Cancer Res 66(9):4636–4644. doi: 10.1158/0008-5472.CAN-06-0031 PubMedCrossRefGoogle Scholar
  11. 11.
    Turashvili G, Bouchal J, Baumforth K, Wei W, Dziechciarkova M, Ehrmann J, Klein J, Fridman E, Skarda J, Srovnal J, Hajduch M, Murray P, Kolar Z (2007) Novel markers for differentiation of lobular and ductal invasive breast carcinomas by laser microdissection and microarray analysis. BMC Cancer 7:55. doi: 10.1186/1471-2407-7-55 PubMedCrossRefGoogle Scholar
  12. 12.
    Roy R, Rodig S, Bielenberg D, Zurakowski D, Moses MA (2011) ADAM12 transmembrane and secreted isoforms promote breast tumor growth: a distinct role for ADAM12-S protein in tumor metastasis. J Biol Chem 286:20758–20768. doi: 10.1074/jbc.M110.216036 PubMedCrossRefGoogle Scholar
  13. 13.
    Kveiborg M, Frohlich C, Albrechtsen R, Tischler V, Dietrich N, Holck P, Kronqvist P, Rank F, Mercurio AM, Wewer UM (2005) A role for ADAM12 in breast tumor progression and stromal cell apoptosis. Cancer Res 65:4754–4761. doi: 10.1158/0008-5472.CAN-05-0262 PubMedCrossRefGoogle Scholar
  14. 14.
    Lendeckel U, Kohl J, Arndt M, Carl-McGrath S, Donat H, Rocken C (2005) Increased expression of ADAM family members in human breast cancer and breast cancer cell lines. J Cancer Res Clin Oncol 131:41–48. doi: 10.1007/s00432-004-0619-y PubMedCrossRefGoogle Scholar
  15. 15.
    Mitsui Y, Mochizuki S, Kodama T, Shimoda M, Ohtsuka T, Shiomi T, Chijiiwa M, Ikeda T, Kitajima M, Okada Y (2006) ADAM28 is overexpressed in human breast carcinomas: implications for carcinoma cell proliferation through cleavage of insulin-like growth factor binding protein-3. Cancer Res 66(20):9913–9920. doi: 10.1158/0008-5472.CAN-06-0377 PubMedCrossRefGoogle Scholar
  16. 16.
    Lim E, Vaillant F, Wu D, Forrest NC, Pal B, Hart AH, Asselin-Labat ML, Gyorki DE, Ward T, Partanen A, Feleppa F, Huschtscha LI, Thorne HJ, Fox SB, Yan M, French JD, Brown MA, Smyth GK, Visvader JE, Lindeman GJ (2009) Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 15:907–913. doi: 10.1038/nm.2000 PubMedCrossRefGoogle Scholar
  17. 17.
    Herschkowitz JI, Simin K, Weigman VJ, Mikaelian I, Usary J, Hu Z, Rasmussen KE, Jones LP, Assefnia S, Chandrasekharan S, Backlund MG, Yin Y, Khramtsov AI, Bastein R, Quackenbush J, Glazer RI, Brown PH, Green JE, Kopelovich L, Furth PA, Palazzo JP, Olopade OI, Bernard PS, Churchill GA, Van Dyke T, Perou CM (2007) Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol 8:R76. doi: 10.1186/gb-2007-8-5-r76 PubMedCrossRefGoogle Scholar
  18. 18.
    Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI, He X, Perou CM (2010) Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 12:R68. doi: 10.1186/bcr2635 PubMedCrossRefGoogle Scholar
  19. 19.
    Hennessy BT, Gonzalez-Angulo AM, Stemke-Hale K, Gilcrease MZ, Krishnamurthy S, Lee JS, Fridlyand J, Sahin A, Agarwal R, Joy C, Liu W, Stivers D, Baggerly K, Carey M, Lluch A, Monteagudo C, He X, Weigman V, Fan C, Palazzo J, Hortobagyi GN, Nolden LK, Wang NJ, Valero V, Gray JW, Perou CM, Mills GB (2009) Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics. Cancer Res 69:4116–4124. doi: 10.1158/0008-5472.CAN-08-3441 PubMedCrossRefGoogle Scholar
  20. 20.
    Creighton CJ, Li X, Landis M, Dixon JM, Neumeister VM, Sjolund A, Rimm DL, Wong H, Rodriguez A, Herschkowitz JI, Fan C, Zhang X, He X, Pavlick A, Gutierrez MC, Renshaw L, Larionov AA, Faratian D, Hilsenbeck SG, Perou CM, Lewis MT, Rosen JM, Chang JC (2009) Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci USA 106:13820–13825. doi: 10.1073/pnas.0905718106 PubMedCrossRefGoogle Scholar
  21. 21.
    Creighton CJ, Chang JC, Rosen JM (2010) Epithelial-mesenchymal transition (EMT) in tumor-initiating cells and its clinical implications in breast cancer. J Mammary Gland Biol Neoplasia 15:253–260. doi: 10.1007/s10911-010-9173-1 PubMedCrossRefGoogle Scholar
  22. 22.
    Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. J Comput Graph Stat 5:299–314Google Scholar
  23. 23.
    Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715. doi: 10.1016/j.cell.2008.03.027 PubMedCrossRefGoogle Scholar
  24. 24.
    Li H, Duhachek-Muggy S, Qi Y, Hong Y, Behbod F, Zolkiewska A (2012) An essential role of metalloprotease-disintegrin ADAM12 in triple-negative breast cancer. Breast Cancer Res Treat 135:759–769. doi: 10.1007/s10549-012-2220-4 PubMedCrossRefGoogle Scholar
  25. 25.
    Li H, Solomon E, Duhachek Muggy S, Sun D, Zolkiewska A (2011) Metalloprotease-disintegrin ADAM12 expression is regulated by Notch signaling via microRNA-29. J Biol Chem 286:21500–21510. doi: 10.1074/jbc.M110.207951 PubMedCrossRefGoogle Scholar
  26. 26.
    Edwards DR, Handsley MM, Pennington CJ (2008) The ADAM metalloproteinases. Mol Aspects Med 29:258–289. doi: 10.1016/j.mam.2008.08.001 PubMedCrossRefGoogle Scholar
  27. 27.
    Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, Yang F, Talantov D, Timmermans M, Meijer-van Gelder ME, Yu J, Jatkoe T, Berns EM, Atkins D, Foekens JA (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365:671–679. doi: 10.1016/S0140-6736(05)17947-1 PubMedGoogle Scholar
  28. 28.
    Bos PD, Zhang XH, Nadal C, Shu W, Gomis RR, Nguyen DX, Minn AJ, van de Vijver MJ, Gerald WL, Foekens JA, Massague J (2009) Genes that mediate breast cancer metastasis to the brain. Nature 459:1005–1009. doi: 10.1038/nature08021 PubMedCrossRefGoogle Scholar
  29. 29.
    Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD, Viale A, Olshen AB, Gerald WL, Massague J (2005) Genes that mediate breast cancer metastasis to lung. Nature 436:518–524. doi: 10.1038/nature03799 PubMedCrossRefGoogle Scholar
  30. 30.
    Miller WR, Larionov AA, Renshaw L, Anderson TJ, White S, Murray J, Murray E, Hampton G, Walker JR, Ho S, Krause A, Evans DB, Dixon JM (2007) Changes in breast cancer transcriptional profiles after treatment with the aromatase inhibitor, letrozole. Pharmacogenet Genomics 17:813–826. doi: 10.1097/FPC.0b013e32820b853a PubMedCrossRefGoogle Scholar
  31. 31.
    Boersma BJ, Reimers M, Yi M, Ludwig JA, Luke BT, Stephens RM, Yfantis HG, Lee DH, Weinstein JN, Ambs S (2008) A stromal gene signature associated with inflammatory breast cancer. Int J Cancer 122:1324–1332. doi: 10.1002/ijc.23237 PubMedCrossRefGoogle Scholar
  32. 32.
    Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, Wicha MS (2003) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17:1253–1270. doi: 10.1101/gad.106180317/10/1253 PubMedCrossRefGoogle Scholar
  33. 33.
    Taube JH, Herschkowitz JI, Komurov K, Zhou AY, Gupta S, Yang J, Hartwell K, Onder TT, Gupta PB, Evans KW, Hollier BG, Ram PT, Lander ES, Rosen JM, Weinberg RA, Mani SA (2010) Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proc Natl Acad Sci USA 107:15449–15454. doi: 10.1073/pnas.1004900107 PubMedCrossRefGoogle Scholar
  34. 34.
    Onder TT, Gupta PB, Mani SA, Yang J, Lander ES, Weinberg RA (2008) Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res 68:3645–3654. doi: 10.1158/0008-5472.CAN-07-2938 PubMedCrossRefGoogle Scholar
  35. 35.
    Scheel C, Eaton EN, Li SH, Chaffer CL, Reinhardt F, Kah KJ, Bell G, Guo W, Rubin J, Richardson AL, Weinberg RA (2011) Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell 145:926–940. doi: 10.1016/j.cell.2011.04.029 PubMedCrossRefGoogle Scholar
  36. 36.
    Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA, Lander ES (2009) Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138:645–659. doi: 10.1016/j.cell.2009.06.034 PubMedCrossRefGoogle Scholar
  37. 37.
    Visvader JE, Lindeman GJ (2012) Cancer stem cells: current status and evolving complexities. Cell Stem Cell 10:717–728. doi: 10.1016/j.stem.2012.05.007 PubMedCrossRefGoogle Scholar
  38. 38.
    Baccelli I, Trumpp A (2012) The evolving concept of cancer and metastasis stem cells. J Cell Biol 198:281–293. doi: 10.1083/jcb.201202014 PubMedCrossRefGoogle Scholar
  39. 39.
    Charafe-Jauffret E, Ginestier C, Birnbaum D (2009) Breast cancer stem cells: tools and models to rely on. BMC Cancer 9:202. doi: 10.1186/1471-2407-9-202 PubMedCrossRefGoogle Scholar
  40. 40.
    Velasco-Velazquez MA, Homsi N, De La Fuente M, Pestell RG (2012) Breast cancer stem cells. Int J Bioch Cell Biol 44(4):573–577. doi: 10.1016/j.biocel.2011.12.020 CrossRefGoogle Scholar
  41. 41.
    Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF, Hilsenbeck SG, Pavlick A, Zhang X, Chamness GC, Wong H, Rosen J, Chang JC (2008) Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Nat Cancer Inst 100:672–679. doi: 10.1093/jnci/djn123 PubMedCrossRefGoogle Scholar
  42. 42.
    Dave B, Mittal V, Tan NM, Chang JC (2012) Epithelial-mesenchymal transition, cancer stem cells and treatment resistance. Breast Cancer Res 14:202. doi: 10.1186/bcr2938 PubMedCrossRefGoogle Scholar
  43. 43.
    Lacerda L, Pusztai L, Woodward WA (2010) The role of tumor initiating cells in drug resistance of breast cancer: implications for future therapeutic approaches. Drug Resist Updat 13:99–108. doi: 10.1016/j.drup.2010.08.001 PubMedCrossRefGoogle Scholar
  44. 44.
    Farmer P, Bonnefoi H, Anderle P, Cameron D, Wirapati P, Becette V, Andre S, Piccart M, Campone M, Brain E, Macgrogan G, Petit T, Jassem J, Bibeau F, Blot E, Bogaerts J, Aguet M, Bergh J, Iggo R, Delorenzi M (2009) A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nat Med 15:68–74. doi: 10.1038/nm.1908 PubMedCrossRefGoogle Scholar
  45. 45.
    Ayers M, Symmans WF, Stec J, Damokosh AI, Clark E, Hess K, Lecocke M, Metivier J, Booser D, Ibrahim N, Valero V, Royce M, Arun B, Whitman G, Ross J, Sneige N, Hortobagyi GN, Pusztai L (2004) Gene expression profiles predict complete pathologic response to neoadjuvant paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide chemotherapy in breast cancer. J Clin Oncol 22:2284–2293. doi: 10.1200/JCO.2004.05.166 PubMedCrossRefGoogle Scholar
  46. 46.
    Popovici V, Chen W, Gallas BG, Hatzis C, Shi W, Samuelson FW, Nikolsky Y, Tsyganova M, Ishkin A, Nikolskaya T, Hess KR, Valero V, Booser D, Delorenzi M, Hortobagyi GN, Shi L, Symmans WF, Pusztai L (2010) Effect of training-sample size and classification difficulty on the accuracy of genomic predictors. Breast Cancer Res 12:R5. doi: 10.1186/bcr2468 PubMedCrossRefGoogle Scholar
  47. 47.
    Valdez KE, Fan F, Smith W, Allred DC, Medina D, Behbod F (2011) Human primary ductal carcinoma in situ (DCIS) subtype-specific pathology is preserved in a mouse intraductal (MIND) xenograft model. J Pathol 225:565–573. doi: 10.1002/path.2969 PubMedCrossRefGoogle Scholar
  48. 48.
    Dyczynska E, Syta E, Sun D, Zolkiewska A (2008) Breast cancer-associated mutations in metalloprotease disintegrin ADAM12 interfere with the intracellular trafficking and processing of the protein. Int J Cancer 122:2634–2640. doi: 10.1002/ijc.23405 PubMedCrossRefGoogle Scholar
  49. 49.
    Roman-Perez E, Casbas-Hernandez P, Pirone JR, Rein J, Carey LA, Lubet RA, Mani SA, Amos KD, Troester MA (2012) Gene expression in extratumoral microenvironment predicts clinical outcome in breast cancer patients. Breast Cancer Res 14:R51. doi: 10.1186/bcr3152 PubMedCrossRefGoogle Scholar
  50. 50.
    Haakensen VD, Lingjaerde OC, Luders T, Riis M, Prat A, Troester MA, Holmen MM, Frantzen JO, Romundstad L, Navjord D, Bukholm IK, Johannesen TB, Perou CM, Ursin G, Kristensen VN, Borresen-Dale AL, Helland A (2011) Gene expression profiles of breast biopsies from healthy women identify a group with claudin-low features. BMC Med Genomics 4:77. doi: 10.1186/1755-8794-4-77 PubMedCrossRefGoogle Scholar
  51. 51.
    Farmer P, Bonnefoi H, Becette V, Tubiana-Hulin M, Fumoleau P, Larsimont D, Macgrogan G, Bergh J, Cameron D, Goldstein D, Duss S, Nicoulaz AL, Brisken C, Fiche M, Delorenzi M, Iggo R (2005) Identification of molecular apocrine breast tumours by microarray analysis. Oncogene 24(29):4660–4671. doi: 10.1038/sj.onc.1208561 PubMedCrossRefGoogle Scholar
  52. 52.
    Desmedt C, Haibe-Kains B, Wirapati P, Buyse M, Larsimont D, Bontempi G, Delorenzi M, Piccart M, Sotiriou C (2008) Biological processes associated with breast cancer clinical outcome depend on the molecular subtypes. Clin Cancer Res 14:5158–5165. doi: 10.1158/1078-0432.CCR-07-4756 PubMedCrossRefGoogle Scholar
  53. 53.
    Hollier BG, Evans K, Mani SA (2009) The epithelial-to-mesenchymal transition and cancer stem cells: a coalition against cancer therapies. J Mammary Gland Biol Neoplasia 14:29–43. doi: 10.1007/s10911-009-9110-3 PubMedCrossRefGoogle Scholar
  54. 54.
    Cheng GZ, Chan J, Wang Q, Zhang W, Sun CD, Wang LH (2007) Twist transcriptionally up-regulates AKT2 in breast cancer cells leading to increased migration, invasion, and resistance to paclitaxel. Cancer Res 67:1979–1987. doi: 10.1158/0008-5472.CAN-06-1479 PubMedCrossRefGoogle Scholar
  55. 55.
    Kajita M, McClinic KN, Wade PA (2004) Aberrant expression of the transcription factors snail and slug alters the response to genotoxic stress. Mol Cell Biol 24:7559–7566. doi: 10.1128/MCB.24.17.7559-7566.2004 PubMedCrossRefGoogle Scholar
  56. 56.
    Yu M, Bardia A, Wittner BS, Stott SL, Smas ME, Ting DT, Isakoff SJ, Ciciliano JC, Wells MN, Shah AM, Concannon KF, Donaldson MC, Sequist LV, Brachtel E, Sgroi D, Baselga J, Ramaswamy S, Toner M, Haber DA, Maheswaran S (2013) Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339:580–584. doi: 10.1126/science.1228522 PubMedCrossRefGoogle Scholar
  57. 57.
    Martin M, Romero A, Cheang MC, Lopez Garcia-Asenjo JA, Garcia-Saenz JA, Oliva B, Roman JM, He X, Casado A, de la Torre J, Furio V, Puente J, Caldes T, Vidart JA, Lopez-Tarruella S, Diaz-Rubio E, Perou CM (2011) Genomic predictors of response to doxorubicin versus docetaxel in primary breast cancer. Breast Cancer Res Treat 128:127–136. doi: 10.1007/s10549-011-1461-y PubMedCrossRefGoogle Scholar
  58. 58.
    Gonzalez-Angulo AM, Iwamoto T, Liu S, Chen H, Do KA, Hortobagyi GN, Mills GB, Meric-Bernstam F, Symmans WF, Pusztai L (2012) Gene expression, molecular class changes, and pathway analysis after neoadjuvant systemic therapy for breast cancer. Clinical Cancer Res 18:1109–1119. doi: 10.1158/1078-0432.CCR-11-2762 CrossRefGoogle Scholar
  59. 59.
    Symmans WF, Ayers M, Clark EA, Stec J, Hess KR, Sneige N, Buchholz TA, Krishnamurthy S, Ibrahim NK, Buzdar AU, Theriault RL, Rosales MF, Thomas ES, Gwyn KM, Green MC, Syed AR, Hortobagyi GN, Pusztai L (2003) Total RNA yield and microarray gene expression profiles from fine-needle aspiration biopsy and core-needle biopsy samples of breast carcinoma. Cancer 97:2960–2971. doi: 10.1002/cncr.11435 PubMedCrossRefGoogle Scholar
  60. 60.
    Roy R, Moses MA (2012) ADAM12 induces estrogen-independence in breast cancer cells. Breast Cancer Res Treat 131(3):731–741. doi: 10.1007/s10549-011-1431-4 PubMedCrossRefGoogle Scholar
  61. 61.
    Frohlich C, Nehammer C, Albrechtsen R, Kronqvist P, Kveiborg M, Sehara-Fujisawa A, Mercurio AM, Wewer UM (2011) ADAM12 produced by tumor cells rather than stromal cells accelerates breast tumor progression. Mol Cancer Res 9:1449–1461. doi: 10.1158/1541-7786.MCR-11-0100 PubMedCrossRefGoogle Scholar
  62. 62.
    Moraes RC, Zhang X, Harrington N, Fung JY, Wu M-F, Hilsenbeck SG, Allred DC, Lewis MT (2007) Constitutive activation of smoothened (SMO) in mammary glands of transgenic mice leads to increased proliferation, altered differentiation and ductal dysplasia. Dev 134:1231–1242. doi: 10.1242/dev.02797 CrossRefGoogle Scholar
  63. 63.
    Dyczynska E, Sun D, Yi H, Sehara-Fujisawa A, Blobel CP, Zolkiewska A (2007) Proteolytic processing of delta-like 1 by ADAM proteases. J Biol Chem 282:436–444. doi: 10.1074/jbc.M605451200 PubMedCrossRefGoogle Scholar
  64. 64.
    Atfi A, Dumont E, Colland F, Bonnier D, L’Helgoualc’h A, Prunier C, Ferrand N, Clement B, Wewer UM, Theret N (2007) The disintegrin and metalloproteinase ADAM12 contributes to TGF-beta signaling through interaction with the type II receptor. J Cell Biol 178:201–208. doi: 10.1083/jcb.200612046 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Hui Li
    • 1
  • Sara Duhachek-Muggy
    • 1
  • Suzanne Dubnicka
    • 2
  • Anna Zolkiewska
    • 1
    Email author
  1. 1.Department of Biochemistry and Molecular BiophysicsKansas State UniversityManhattanUSA
  2. 2.Department of StatisticsKansas State UniversityManhattanUSA

Personalised recommendations