Breast Cancer Research and Treatment

, Volume 139, Issue 3, pp 667–676

The presence of programmed death 1 (PD-1)-positive tumor-infiltrating lymphocytes is associated with poor prognosis in human breast cancer

  • S. Muenst
  • S. D. Soysal
  • F. Gao
  • E. C. Obermann
  • D. Oertli
  • W. E Gillanders
Preclinical study

Abstract

Programmed death 1 (PD-1) is a co-inhibitory receptor in the CD28/CTL-4 family, and functions as a negative regulator of the immune system. Tumor-infiltrating lymphocytes (TIL) in many epithelial cancers express PD-1, suggesting that antitumor immunity may be modulated by the PD-1/PD-L1 signaling pathway, and promising results from two recent clinical trials with monoclonal antibodies targeting PD-1 or PD-L1 confirm the clinical relevance of this pathway in human cancer. To explore the role of PD-1+ TIL in human breast cancer, we performed immunohistochemistry studies on a tissue microarray encompassing 660 breast cancer cases with detailed clinical annotation and outcomes data. PD-1+ TIL were present in 104 (15.8 %) of the 660 breast cancer cases. Their presence was associated with tumor size, grade, and lymph node status, and was differentially associated with the intrinsic subtypes of breast cancer. In univariate survival analyses, the presence of PD-1+ TIL was associated with a significantly worse overall survival (HR = 2.736, p < 0.001). In subset analyses, the presence of PD-1+ TIL was associated with significantly worse overall survival in the luminal B HER2 subtype (HR = 2.678, p < 0.001), the luminal B HER2+ subtype (HR = 3.689, p < 0.001), and the basal-like subtype (HR = 3.140, p < 0.001). This is the first study to demonstrate that the presence of PD-1+ TIL is associated with poor prognosis in human breast cancer, with important implications for the potential application of antibody therapies targeting the PD-1/PD-L1 signaling pathway in this disease.

Keywords

PD-1 Tumor infiltrating lymphocytes Breast cancer Prognostic factor 

References

  1. 1.
    Porichis F, Kaufmann DE (2012) Role of PD-1 in HIV pathogenesis and as target for therapy. Curr HIV/AIDS Rep 9(1):81–90. doi:10.1007/s11904-011-0106-4 PubMedCrossRefGoogle Scholar
  2. 2.
    Walunas TL, Lenschow DJ, Bakker CY, Linsley PS, Freeman GJ, Green JM, Thompson CB, Bluestone JA (1994) CTLA-4 can function as a negative regulator of T cell activation. Immunity 1(5):405–413. doi:1074-7613(94)90071-X PubMedCrossRefGoogle Scholar
  3. 3.
    Watanabe N, Gavrieli M, Sedy JR, Yang J, Fallarino F, Loftin SK, Hurchla MA, Zimmerman N, Sim J, Zang X, Murphy TL, Russell JH, Allison JP, Murphy KM (2003) BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1. Nat Immunol 4(7):670–679. doi:10.1038/ni944 PubMedCrossRefGoogle Scholar
  4. 4.
    Latchman Y, Wood CR, Chernova T, Chaudhary D, Borde M, Chernova I, Iwai Y, Long AJ, Brown JA, Nunes R, Greenfield EA, Bourque K, Boussiotis VA, Carter LL, Carreno BM, Malenkovich N, Nishimura H, Okazaki T, Honjo T, Sharpe AH, Freeman GJ (2001) PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2(3):261–268. doi:10.1038/85330 PubMedCrossRefGoogle Scholar
  5. 5.
    Kitazawa Y, Fujino M, Wang Q, Kimura H, Azuma M, Kubo M, Abe R, Li XK (2007) Involvement of the programmed death-1/programmed death-1 ligand pathway in CD4+ CD25+ regulatory T-cell activity to suppress alloimmune responses. Transplantation 83(6):774–782. doi:10.1097/01.tp.0000256293.90270.e8 PubMedCrossRefGoogle Scholar
  6. 6.
    Probst HC, McCoy K, Okazaki T, Honjo T, van den Broek M (2005) Resting dendritic cells induce peripheral CD8+ T cell tolerance through PD-1 and CTLA-4. Nat Immunol 6(3):280–286. doi:10.1038/ni1165 PubMedCrossRefGoogle Scholar
  7. 7.
    Flies DB, Sandler BJ, Sznol M, Chen L (2011) Blockade of the B7–H1/PD-1 pathway for cancer immunotherapy. Yale J Biol Med 84(4):409–421PubMedGoogle Scholar
  8. 8.
    Aaltomaa S, Lipponen P, Eskelinen M, Kosma VM, Marin S, Alhava E, Syrjanen K (1992) Tumor size, nuclear morphometry, mitotic indices as prognostic factors in axillary-lymph-node-positive breast cancer. Eur Surg Res 24(3):160–168PubMedCrossRefGoogle Scholar
  9. 9.
    Day CL, Kaufmann DE, Kiepiela P, Brown JA, Moodley ES, Reddy S, Mackey EW, Miller JD, Leslie AJ, DePierres C, Mncube Z, Duraiswamy J, Zhu B, Eichbaum Q, Altfeld M, Wherry EJ, Coovadia HM, Goulder PJ, Klenerman P, Ahmed R, Freeman GJ, Walker BD (2006) PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 443(7109):350–354PubMedCrossRefGoogle Scholar
  10. 10.
    Kaufmann DE, Kavanagh DG, Pereyra F, Zaunders JJ, Mackey EW, Miura T, Palmer S, Brockman M, Rathod A, Piechocka-Trocha A, Baker B, Zhu B, Le Gall S, Waring MT, Ahern R, Moss K, Kelleher AD, Coffin JM, Freeman GJ, Rosenberg ES, Walker BD (2007) Upregulation of CTLA-4 by HIV-specific CD4+ T cells correlates with disease progression and defines a reversible immune dysfunction. Nat Immunol 8(11):1246–1254PubMedCrossRefGoogle Scholar
  11. 11.
    Petrovas C, Casazza JP, Brenchley JM, Price DA, Gostick E, Adams WC, Precopio ML, Schacker T, Roederer M, Douek DC, Koup RA (2006) PD-1 is a regulator of virus-specific CD8+ T cell survival in HIV infection. J Exp Med 203(10):2281–2292PubMedCrossRefGoogle Scholar
  12. 12.
    Trautmann L, Janbazian L, Chomont N, Said EA, Gimmig S, Bessette B, Boulassel MR, Delwart E, Sepulveda H, Balderas RS, Routy JP, Haddad EK, Sekaly RP (2006) Upregulation of PD-1 expression on HIV-specific CD8+ T cells leads to reversible immune dysfunction. Nat Med 12(10):1198–1202PubMedCrossRefGoogle Scholar
  13. 13.
    Czerniecki BJ, Koski GK, Koldovsky U, Xu S, Cohen PA, Mick R, Nisenbaum H, Pasha T, Xu M, Fox KR, Weinstein S, Orel SG, Vonderheide R, Coukos G, DeMichele A, Araujo L, Spitz FR, Rosen M, Levine BL, June C, Zhang PJ (2007) Targeting HER-2/neu in early breast cancer development using dendritic cells with staged interleukin-12 burst secretion. Cancer Res 67(4):1842–1852. doi:10.1158/0008-5472.CAN-06-4038 PubMedCrossRefGoogle Scholar
  14. 14.
    Ghebeh H, Barhoush E, Tulbah A, Elkum N, Al-Tweigeri T, Dermime S (2008) FOXP3+ Tregs and B7–H1+/PD-1+ T lymphocytes co-infiltrate the tumor tissues of high-risk breast cancer patients: implication for immunotherapy. BMC Cancer 8:57. doi:10.1186/1471-2407-8-57 PubMedCrossRefGoogle Scholar
  15. 15.
    Ghebeh H, Mohammed S, Al-Omair A, Qattan A, Lehe C, Al-Qudaihi G, Elkum N, Alshabanah M, Bin Amer S, Tulbah A, Ajarim D, Al-Tweigeri T, Dermime S (2006) The B7–H1 (PD-L1) T lymphocyte-inhibitory molecule is expressed in breast cancer patients with infiltrating ductal carcinoma: correlation with important high-risk prognostic factors. Neoplasia 8(3):190–198. doi:10.1593/neo.05733 PubMedCrossRefGoogle Scholar
  16. 16.
    Sfanos KS, Bruno TC, Meeker AK, De Marzo AM, Isaacs WB, Drake CG (2009) Human prostate-infiltrating CD8+ T lymphocytes are oligoclonal and PD-1+. Prostate 69(15):1694–1703. doi:10.1002/pros.21020 PubMedCrossRefGoogle Scholar
  17. 17.
    Ahmadzadeh M, Johnson LA, Heemskerk B, Wunderlich JR, Dudley ME, White DE, Rosenberg SA (2009) Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood 114(8):1537–1544. doi:10.1182/blood-2008-12-195792 PubMedCrossRefGoogle Scholar
  18. 18.
    Brown JA, Dorfman DM, Ma FR, Sullivan EL, Munoz O, Wood CR, Greenfield EA, Freeman GJ (2003) Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production. J Immunol 170(3):1257–1266PubMedGoogle Scholar
  19. 19.
    Zou W, Chen L (2008) Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev Immunol 8(6):467–477. doi:10.1038/nri2326 PubMedCrossRefGoogle Scholar
  20. 20.
    Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, Roche PC, Lu J, Zhu G, Tamada K, Lennon VA, Celis E, Chen L (2002) Tumor-associated B7–H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8(8):793–800. doi:10.1038/nm730nm730 PubMedGoogle Scholar
  21. 21.
    Blank C, Gajewski TF, Mackensen A (2005) Interaction of PD-L1 on tumor cells with PD-1 on tumor-specific T cells as a mechanism of immune evasion: implications for tumor immunotherapy. Cancer Immunol Immunother 54(4):307–314. doi:10.1007/s00262-004-0593-x PubMedCrossRefGoogle Scholar
  22. 22.
    Strome SE, Dong H, Tamura H, Voss SG, Flies DB, Tamada K, Salomao D, Cheville J, Hirano F, Lin W, Kasperbauer JL, Ballman KV, Chen L (2003) B7–H1 blockade augments adoptive T-cell immunotherapy for squamous cell carcinoma. Cancer Res 63(19):6501–6505PubMedGoogle Scholar
  23. 23.
    Curiel TJ, Wei S, Dong H, Alvarez X, Cheng P, Mottram P, Krzysiek R, Knutson KL, Daniel B, Zimmermann MC, David O, Burow M, Gordon A, Dhurandhar N, Myers L, Berggren R, Hemminki A, Alvarez RD, Emilie D, Curiel DT, Chen L, Zou W (2003) Blockade of B7–H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat Med 9(5):562–567. doi:10.1038/nm863 PubMedCrossRefGoogle Scholar
  24. 24.
    Hirano F, Kaneko K, Tamura H, Dong H, Wang S, Ichikawa M, Rietz C, Flies DB, Lau JS, Zhu G, Tamada K, Chen L (2005) Blockade of B7–H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Res 65(3):1089–1096. doi:65/3/1089 PubMedGoogle Scholar
  25. 25.
    Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, Leming PD, Spigel DR, Antonia SJ, Horn L, Drake CG, Pardoll DM, Chen L, Sharfman WH, Anders RA, Taube JM, McMiller TL, Xu H, Korman AJ, Jure-Kunkel M, Agrawal S, McDonald D, Kollia GD, Gupta A, Wigginton JM, Sznol M (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366(26):2443–2454. doi:10.1056/NEJMoa1200690 PubMedCrossRefGoogle Scholar
  26. 26.
    Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, Sharfman WH, Stankevich E, Pons A, Salay TM, McMiller TL, Gilson MM, Wang C, Selby M, Taube JM, Anders R, Chen L, Korman AJ, Pardoll DM, Lowy I, Topalian SL (2010) Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol 28(19):3167–3175. doi:10.1200/JCO.2009.26.7609 PubMedCrossRefGoogle Scholar
  27. 27.
    Aaltomaa S, Lipponen P, Eskelinen M, Kosma VM, Marin S, Alhava E, Syrjanen K (1992) Lymphocyte infiltrates as a prognostic variable in female breast cancer. Eur J Cancer 28A(4–5):859–864PubMedCrossRefGoogle Scholar
  28. 28.
    Marrogi AJ, Munshi A, Merogi AJ, Ohadike Y, El-Habashi A, Marrogi OL, Freeman SM (1997) Study of tumor infiltrating lymphocytes and transforming growth factor-beta as prognostic factors in breast carcinoma. Int J Cancer 74(5):492–501. doi:10.1002/(SICI)1097-0215(19971021)74:5<492:AID-IJC3>3.0.CO;2-Z PubMedCrossRefGoogle Scholar
  29. 29.
    Droeser R, Zlobec I, Kilic E, Guth U, Heberer M, Spagnoli G, Oertli D, Tapia C (2012) Differential pattern and prognostic significance of CD4+, FOXP3+ and IL-17+ tumor infiltrating lymphocytes in ductal and lobular breast cancers. BMC Cancer 12:134. doi:10.1186/1471-2407-12-134 PubMedCrossRefGoogle Scholar
  30. 30.
    Krieg C, Boyman O, Fu YX, Kaye J (2007) B and T lymphocyte attenuator regulates CD8+ T cell-intrinsic homeostasis and memory cell generation. Nat Immunol 8(2):162–171. doi:10.1038/ni1418 PubMedCrossRefGoogle Scholar
  31. 31.
    Wang XF, Chen YJ, Wang Q, Ge Y, Dai Q, Yang KF, Fang X, Zhou YH, Hu YM, Mao YX, Zhang XG (2007) Distinct expression and inhibitory function of B and T lymphocyte attenuator on human T cells. Tissue Antigens 69(2):145–153. doi:10.1111/j.1399-0039.2006.00710.x PubMedCrossRefGoogle Scholar
  32. 32.
    Derre L, Rivals JP, Jandus C, Pastor S, Rimoldi D, Romero P, Michielin O, Olive D, Speiser DE (2010) BTLA mediates inhibition of human tumor-specific CD8+ T cells that can be partially reversed by vaccination. J Clin Invest 120(1):157–167. doi:10.1172/JCI40070 PubMedCrossRefGoogle Scholar
  33. 33.
    Fourcade J, Sun Z, Pagliano O, Guillaume P, Luescher IF, Sander C, Kirkwood JM, Olive D, Kuchroo V, Zarour HM (2012) CD8(+) T cells specific for tumor antigens can be rendered dysfunctional by the tumor microenvironment through upregulation of the inhibitory receptors BTLA and PD-1. Cancer Res 72(4):887–896. doi:10.1158/0008-5472.CAN-11-2637 PubMedCrossRefGoogle Scholar
  34. 34.
    McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM (2006) REporting recommendations for tumor MARKer prognostic studies (REMARK). Breast Cancer Res Treat 100(2):229–235. doi:10.1007/s10549-006-9242-8 PubMedCrossRefGoogle Scholar
  35. 35.
    Bubendorf L, Nocito A, Moch H, Sauter G (2001) Tissue microarray (TMA) technology: miniaturized pathology archives for high-throughput in situ studies. J Pathol 195(1):72–79. doi:10.1002/path.893 PubMedCrossRefGoogle Scholar
  36. 36.
    Tapia C, Schraml P, Simon R, Al-Kuraya KS, Maurer R, Mirlacher M, Novotny H, Spichtin H, Mihatsch MJ, Sauter G (2004) HER2 analysis in breast cancer: reduced immunoreactivity in FISH non-informative cancer biopsies. Int J Oncol 25(6):1551–1557PubMedGoogle Scholar
  37. 37.
    Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thurlimann B, Senn HJ (2011) Strategies for subtypes–dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol 22(8):1736–1747. doi:10.1093/annonc/mdr304 PubMedCrossRefGoogle Scholar
  38. 38.
    Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752. doi:10.1038/35021093 PubMedCrossRefGoogle Scholar
  39. 39.
    Prat A, Perou CM (2011) Deconstructing the molecular portraits of breast cancer. Mol Oncol 5(1):5–23. doi:10.1016/j.molonc.2010.11.003 PubMedCrossRefGoogle Scholar
  40. 40.
    Blows FM, Driver KE, Schmidt MK, Broeks A, van Leeuwen FE, Wesseling J, Cheang MC, Gelmon K, Nielsen TO, Blomqvist C, Heikkila P, Heikkinen T, Nevanlinna H, Akslen LA, Begin LR, Foulkes WD, Couch FJ, Wang X, Cafourek V, Olson JE, Baglietto L, Giles GG, Severi G, McLean CA, Southey MC, Rakha E, Green AR, Ellis IO, Sherman ME, Lissowska J, Anderson WF, Cox A, Cross SS, Reed MW, Provenzano E, Dawson SJ, Dunning AM, Humphreys M, Easton DF, Garcia-Closas M, Caldas C, Pharoah PD, Huntsman D (2010) Subtyping of breast cancer by immunohistochemistry to investigate a relationship between subtype and short and long term survival: a collaborative analysis of data for 10,159 cases from 12 studies. PLoS Med 7(5):e1000279. doi:10.1371/journal.pmed.1000279 PubMedCrossRefGoogle Scholar
  41. 41.
    Saito H, Kuroda H, Matsunaga T, Osaki T, Ikeguchi M (2012) Increased PD-1 expression on CD4+ and CD8+ T cells is involved in immune evasion in gastric cancer. J Surg Oncol. doi:10.1002/jso.23281 Google Scholar
  42. 42.
    Yamamoto R, Nishikori M, Kitawaki T, Sakai T, Hishizawa M, Tashima M, Kondo T, Ohmori K, Kurata M, Hayashi T, Uchiyama T (2008) PD-1-PD-1 ligand interaction contributes to immunosuppressive microenvironment of Hodgkin lymphoma. Blood 111(6):3220–3224. doi:10.1182/blood-2007-05-085159 PubMedCrossRefGoogle Scholar
  43. 43.
    Muenst S, Hoeller S, Dirnhofer S, Tzankov A (2009) Increased programmed death-1+ tumor-infiltrating lymphocytes in classical Hodgkin lymphoma substantiate reduced overall survival. Hum Pathol 40(12):1715–1722. doi:10.1016/j.humpath.2009.03.025 Google Scholar
  44. 44.
    Badoual C, Hans S, Merillon N, Van Ryswick C, Ravel P, Benhamouda N, Levionnois E, Nizard M, Si-Mohamed A, Besnier N, Gey A, Rotem-Yehudar R, Pere H, Tran T, Guerin CL, Chauvat A, Dransart E, Alanio C, Albert S, Barry B, Sandoval F, Quintin-Colonna F, Bruneval P, Fridman WH, Lemoine FM, Oudard S, Johannes L, Olive D, Brasnu D, Tartour E (2012) PD-1-expressing tumor-infiltrating T cells are a favorable prognostic biomarker in HPV associated head and neck cancer. Cancer Res. doi:10.1158/0008-5472.CAN-12-2606 PubMedGoogle Scholar
  45. 45.
    Chapon M, Randriamampita C, Maubec E, Badoual C, Fouquet S, Wang SF, Marinho E, Farhi D, Garcette M, Jacobelli S, Rouquette A, Carlotti A, Girod A, Prevost-Blondel A, Trautmann A, Avril MF, Bercovici N (2011) Progressive upregulation of PD-1 in primary and metastatic melanomas associated with blunted TCR signaling in infiltrating T lymphocytes. J Invest Dermatol 131(6):1300–1307. doi:10.1038/jid.2011.30 PubMedCrossRefGoogle Scholar
  46. 46.
    Berger R, Rotem-Yehudar R, Slama G, Landes S, Kneller A, Leiba M, Koren-Michowitz M, Shimoni A, Nagler A (2008) Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malignancies. Clin Cancer Res 14(10):3044–3051. doi:10.1158/1078-0432.CCR-07-4079 PubMedCrossRefGoogle Scholar
  47. 47.
    Topalian SL, Drake CG, Pardoll DM (2012) Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr Opin Immunol 24(2):207–212. doi:10.1016/j.coi.2011.12.009 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • S. Muenst
    • 1
    • 2
  • S. D. Soysal
    • 2
    • 3
  • F. Gao
    • 4
  • E. C. Obermann
    • 1
  • D. Oertli
    • 3
  • W. E Gillanders
    • 2
  1. 1.Institute of PathologyUniversity Hospital BaselBaselSwitzerland
  2. 2.Department of SurgeryWashington University School of MedicineSt. LouisUSA
  3. 3.Department of SurgeryUniversity Hospital BaselBaselSwitzerland
  4. 4.Division of BiostatisticsWashington University School of MedicineSt. LouisUSA

Personalised recommendations