Advertisement

Breast Cancer Research and Treatment

, Volume 139, Issue 1, pp 163–176 | Cite as

Dietary flavonoid and lignan intake and breast cancer risk according to menopause and hormone receptor status in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study

  • Raul Zamora-RosEmail author
  • Pietro Ferrari
  • Carlos A. González
  • Anne Tjønneland
  • Anja Olsen
  • Lea Bredsdorff
  • Kim Overvad
  • Marina Touillaud
  • Florence Perquier
  • Guy Fagherazzi
  • Annekatrin Lukanova
  • Kaja Tikk
  • Krasimira Aleksandrova
  • Heiner Boeing
  • Antonia Trichopoulou
  • Dimitrios Trichopoulos
  • Vardis Dilis
  • Giovanna Masala
  • Sabina Sieri
  • Amalia Mattiello
  • Rosario Tumino
  • Fulvio Ricceri
  • H. Bas Bueno-de-Mesquita
  • Petra H. M. Peeters
  • Elisabete Weiderpass
  • Guri Skeie
  • Dagrun Engeset
  • Virginia Menéndez
  • Noémie Travier
  • Esther Molina-Montes
  • Pilar Amiano
  • Maria-Dolores Chirlaque
  • Aurelio Barricarte
  • Peter Wallström
  • Emily Sonestedt
  • Malin Sund
  • Rikard Landberg
  • Kay-Thee Khaw
  • Nicholas J. Wareham
  • Ruth C. Travis
  • Augustin Scalbert
  • Heather A. Ward
  • Elio Riboli
  • Isabelle Romieu
Epidemiology

Abstract

Evidence on the association between dietary flavonoids and lignans and breast cancer (BC) risk is inconclusive, with the possible exception of isoflavones in Asian countries. Therefore, we investigated prospectively dietary total and subclasses of flavonoid and lignan intake and BC risk according to menopause and hormonal receptor status in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. The study included 334,850 women, mostly aged between 35 and 70 years from ten European countries. At baseline, country-specific validated dietary questionnaires were used. A flavonoid and lignan food composition database was developed from the US Department of Agriculture, the Phenol-Explorer and the UK Food Standards Agency databases. Cox regression models were used to analyse the association between dietary flavonoid/lignan intake and the risk of developing BC. During an average 11.5-year follow-up, 11,576 incident BC cases were identified. No association was observed between the intake of total flavonoids [hazard ratio comparing fifth to first quintile (HRQ5–Q1) 0.97, 95 % confidence interval (CI): 0.90–1.04; P trend = 0.591], isoflavones (HRQ5–Q1 1.00, 95 % CI: 0.91–1.10; P trend = 0.734), or total lignans (HRQ5–Q1 1.02, 95 % CI: 0.93–1.11; P trend = 0.469) and overall BC risk. The stratification of the results by menopausal status at recruitment or the differentiation of BC cases according to oestrogen and progesterone receptors did not affect the results. This study shows no associations between flavonoid and lignan intake and BC risk, overall or after taking into account menopausal status and BC hormone receptors.

Keywords

Flavonoids Lignans Breast cancer Hormone receptors EPIC 

List of Abbreviations

BC

Breast cancer

EPIC

European prospective investigation into cancer and nutrition

ER

Oestrogen receptor

PR

Progesterone receptor

Notes

Acknowledgements

This work was supported by the European Commission: Public Health and Consumer Protection Directorate 1993–2004; Research Directorate-General 2005; Ligue contre le Cancer, Institut Gustave Roussy, Mutuelle Générale de l’Education Nationale, Institut National de la Santé et de la Recherche Médicale (INSERM) (France); German Cancer Aid; German Cancer Research Center (DKFZ); German Federal Ministry of Education and Research; Danish Cancer Society: Health Research Fund (FIS) of the Spanish Ministry of Health (RTICC DR06/0020/0091); the participating regional governments from Asturias, Andalucía, Murcia, Navarra and Basque Country and the Catalan Institute of Oncology of Spain; Cancer Research UK; Medical Research Council, UK; Hellenic Health Foundation, Greece; Italian Association for Research on Cancer-AIRC-Milan, Italy; Compagnia San Paolo, Italy; Dutch Ministry of Public Health, Welfare and Sports; Dutch Ministry of Health; Dutch Prevention Funds; LK Research Funds; Dutch ZON (Zorg Onderzoek Nederland); World Cancer Research Fund (WCRF); Statistics Netherlands (The Netherlands); Swedish Cancer Society; Swedish Scientific Council; Regional Government of Skane, Sweden; and Nordforsk—Centre of Excellence programme. Some authors are partners of ECNIS, a network of excellence of the 6 Frame Program of the European Commission. R.Z.R. is thankful for a postdoctoral programme, Fondo de Investigación Sanitaria (FIS; No. CD09/00133), from the Spanish Ministry of Science and Innovation.

Conflict of interest

  The authors declare that they have no conflict of interest.

References

  1. 1.
    Chen WY, Colditz GA (2007) Risk factors and hormone-receptor status: epidemiology, risk-prediction models and treatment implications for breast cancer. Nat Clin Pract Oncol 4(7):415–423PubMedCrossRefGoogle Scholar
  2. 2.
    Minami CA, Chung DU, Chang HR (2011) Management options in triple-negative breast cancer. Breast Cancer (Auckl) 5:175–199Google Scholar
  3. 3.
    Collins LC, Marotti JD, Gelber S et al (2012) Pathologic features and molecular phenotype by patient age in a large cohort of young women with breast cancer. Breast Cancer Res Treat 131(3):1061–1066PubMedCrossRefGoogle Scholar
  4. 4.
    Perez-Jimenez J, Neveu V, Vos F, Scalbert A (2010) Systematic analysis of the content of 502 polyphenols in 452 foods and beverages: an application of the phenol-explorer database. J Agric Food Chem 58(8):4959–4969PubMedCrossRefGoogle Scholar
  5. 5.
    Kandaswami C, Lee LT, Lee PP, Hwang JJ, Ke FC, Huang YT, Lee MT (2005) The antitumor activities of flavonoids. In Vivo 19(5):895–909PubMedGoogle Scholar
  6. 6.
    Moon YJ, Wang X, Morris ME (2006) Dietary flavonoids: effects on xenobiotic and carcinogen metabolism. Toxicol In Vitro 20(2):187–210PubMedCrossRefGoogle Scholar
  7. 7.
    Rice S, Whitehead SA (2008) Phytoestrogens oestrogen synthesis and breast cancer. J Steroid Biochem Mol Biol 108(3–5):186–195PubMedCrossRefGoogle Scholar
  8. 8.
    Peeters PH, Keinan-Boker L, van der Schouw YT, Grobbee DE (2003) Phytoestrogens and breast cancer risk. Review of the epidemiological evidence. Breast Cancer Res Treat 77(2):171–183PubMedCrossRefGoogle Scholar
  9. 9.
    Hui C, Qi X, Qianyong Z, Xiaoli P, Jundong Z, Mantian M (2013) Flavonoids, flavonoid subclasses and breast cancer risk: a meta-analysis of epidemiologic studies. PLoS One 8(1):e54318PubMedCrossRefGoogle Scholar
  10. 10.
    Wang L, Lee IM, Zhang SM, Blumberg JB, Buring JE, Sesso HD (2009) Dietary intake of selected flavonols, flavones, and flavonoid-rich foods and risk of cancer in middle-aged and older women. Am J Clin Nutr 89(3):905–912PubMedCrossRefGoogle Scholar
  11. 11.
    Adebamowo CA, Cho E, Sampson L, Katan MB, Spiegelman D, Willett WC, Holmes MD (2005) Dietary flavonols and flavonol-rich foods intake and the risk of breast cancer. Int J Cancer 114(4):628–633PubMedCrossRefGoogle Scholar
  12. 12.
    Knekt P, Kumpulainen J, Jarvinen R, Rissanen H, Heliövaara M, Reunanen A, Hakulinen T, Aromaa A (2002) Flavonoid intake and risk of chronic diseases. Am J Clin Nutr 76(3):560–568PubMedGoogle Scholar
  13. 13.
    Arts IC, Jacobs DR Jr, Gross M, Harnack LJ, Folsom AR (2002) Dietary catechins and cancer incidence among postmenopausal women: the Iowa Women’s Health Study (United States). Cancer Causes Control 13(4):373–382PubMedCrossRefGoogle Scholar
  14. 14.
    Knekt P, Jarvinen R, Seppanen R, Hellövaara M, Teppo L, Pukkala E, Aromaa A (1997) Dietary flavonoids and the risk of lung cancer and other malignant neoplasms. Am J Epidemiol 146(3):223–230PubMedCrossRefGoogle Scholar
  15. 15.
    Hedelin M, Lof M, Olsson M, Adlercreutz H, Sandin S, Weiderpass E (2008) Dietary phytoestrogens are not associated with risk of overall breast cancer but diets rich in coumestrol are inversely associated with risk of estrogen receptor and progesterone receptor negative breast tumors in Swedish women. J Nutr 138(5):938–945PubMedGoogle Scholar
  16. 16.
    Dong JY, Qin LQ (2011) Soy isoflavones consumption and risk of breast cancer incidence or recurrence: a meta-analysis of prospective studies. Breast Cancer Res Treat 125(2):315–323PubMedCrossRefGoogle Scholar
  17. 17.
    Lee SA, Wen W, Xiang YB et al (2007) Assessment of dietary isoflavone intake among middle-aged Chinese men. J Nutr 137(4):1011–1016PubMedGoogle Scholar
  18. 18.
    Velentzis LS, Woodside JV, Cantwell MM, Leathem AJ, Keshtgar MR (2008) Do phytoestrogens reduce the risk of breast cancer and breast cancer recurrence? What clinicians need to know. Eur J Cancer 44(13):1799–1806PubMedCrossRefGoogle Scholar
  19. 19.
    Buck K, Zaineddin AK, Vrieling A, Linseisen J, Chang-Claude J (2010) Meta-analyses of lignans and enterolignans in relation to breast cancer risk. Am J Clin Nutr 92(1):141–153PubMedCrossRefGoogle Scholar
  20. 20.
    Velentzis LS, Cantwell MM, Cardwell C, Keshtgar MR, Leathem AJ, Woodside JV (2009) Lignans and breast cancer risk in pre- and post-menopausal women: meta-analyses of observational studies. Br J Cancer 100(9):1492–1498PubMedCrossRefGoogle Scholar
  21. 21.
    Touillaud MS, Thiebaut AC, Fournier A, Niravong M, Boutron-Ruault MC, Clavel-Chapelon F (2007) Dietary lignan intake and postmenopausal breast cancer risk by estrogen and progesterone receptor status. J Natl Cancer Inst 99(6):475–486PubMedCrossRefGoogle Scholar
  22. 22.
    Sonestedt E, Borgquist S, Ericson U, Gullberg B, Olsson H, Adlercreutz H, Landberg G, Wirfält E (2008) Enterolactone is differently associated with estrogen receptor beta-negative and -positive breast cancer in a Swedish nested case–control study. Cancer Epidemiol Biomarkers Prev 17(11):3241–3251PubMedCrossRefGoogle Scholar
  23. 23.
    Olsen A, Knudsen KE, Thomsen BL, Loft S, Stripp C, Overvad K, Møller S, Tjønneland A (2004) Plasma enterolactone and breast cancer incidence by estrogen receptor status. Cancer Epidemiol Biomarkers Prev 13(12):2084–2089PubMedGoogle Scholar
  24. 24.
    Ward HA, Kuhnle GG, Mulligan AA, Lentjes MA, Luben RN, Khaw KT (2010) Breast, colorectal, and prostate cancer risk in the European Prospective Investigation into Cancer and Nutrition-Norfolk in relation to phytoestrogen intake derived from an improved database. Am J Clin Nutr 91(2):440–448PubMedCrossRefGoogle Scholar
  25. 25.
    Riboli E, Hunt KJ, Slimani N et al (2002) European Prospective Investigation into Cancer and Nutrition (EPIC): study populations and data collection. Public Health Nutr 5(6B):1113–1124PubMedCrossRefGoogle Scholar
  26. 26.
    Zamora-Ros R, Knaze V, Lujan-Barroso L et al (2012) Dietary intakes and food sources of phytoestrogens in the European Prospective Investigation into Cancer and Nutrition (EPIC) 24-hour dietary recall cohort. Eur J Clin Nutr 66(8):932–941PubMedCrossRefGoogle Scholar
  27. 27.
    Zamora-Ros R, Knaze V, Lujan-Barroso L et al (2013) Differences in dietary intakes, food sources, and determinants of total flavonoids between Mediterranean and non-Mediterranean countries participating in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study. Br J Nutr. doi: 10.1017/S0007114512003273
  28. 28.
    Riboli E, Kaaks R (1997) The EPIC Project: rationale and study design. European Prospective Investigation into Cancer and Nutrition. Int J Epidemiol 26(Suppl 1):S6–S14PubMedCrossRefGoogle Scholar
  29. 29.
    Slimani N, Deharveng G, Unwin I et al (2007) The EPIC nutrient database project (ENDB): a first attempt to standardize nutrient databases across the 10 European countries participating in the EPIC Study. Eur J Clin Nutr 61(9):1037–1056PubMedCrossRefGoogle Scholar
  30. 30.
    Haftenberger M, Lahmann PH, Panico S et al (2002) Overweight, obesity and fat distribution in 50- to 64-year-old participants in the European Prospective Investigation into Cancer and Nutrition (EPIC). Public Health Nutr 5(6B):1147–1162PubMedCrossRefGoogle Scholar
  31. 31.
    Layfield LJ, Gupta D, Mooney EE (2000) Assessment of Tissue Estrogen and Progesterone Receptor Levels: a Survey of Current Practice, Techniques, and Quantitation Methods. Breast J 6(3):189–196PubMedCrossRefGoogle Scholar
  32. 32.
    U.S. Department of Agriculture (2004) USDA Database for the proanthocyanidin content of selected foods. USDA, BeltsvilleGoogle Scholar
  33. 33.
    U.S. Department of Agriculture (2007) USDA Database for the flavonoid content of selected foods. USDA, BeltsvilleGoogle Scholar
  34. 34.
    U.S. Department of Agriculture (2008) USDA Database for the isoflavone content of selected foods. USDA, BeltsvilleGoogle Scholar
  35. 35.
    Neveu V, Perez-Jimenez J, Vos F et al (2010) Phenol-Explorer: an online comprehensive database on polyphenol contents in foods. Database (Oxford) 2010:bap024. doi: 10.1093/database/bap024
  36. 36.
    Knaze V, Zamora-Ros R, Luján-Barroso L et al (2012) Intake estimation of total and individual flavan-3-ols, proanthocyanidins and theaflavins, their food sources and determinants in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study. Br J Nutr 108(6):1095–1108PubMedCrossRefGoogle Scholar
  37. 37.
    Zamora-Ros R, Knaze V, Lujan-Barroso L et al (2011) Estimation of the intake of anthocyanidins and their food sources in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study. Br J Nutr 106(7):1090–1099PubMedCrossRefGoogle Scholar
  38. 38.
    Zamora-Ros R, Knaze V, Lujan-Barroso L et al (2011) Estimated dietary intakes of flavonols, flavanones and flavones in the European Prospective Investigation into Cancer and Nutrition (EPIC) 24-hour dietary recall cohort. Br J Nutr 106(12):1915–1925PubMedCrossRefGoogle Scholar
  39. 39.
    Schoenfeld D (1980) Chi squared goodness of fit tests for the proportional hazards regression model. Biometrika 67(1):145–153CrossRefGoogle Scholar
  40. 40.
    Thiebaut AC, Benichou J (2004) Choice of time-scale in Cox’s model analysis of epidemiologic cohort data: a simulation study. Stat Med 23(24):3803–3820PubMedCrossRefGoogle Scholar
  41. 41.
    Romieu I, Ferrari P, Rinaldi S et al (2012) Dietary glycemic index and glycemic load and breast cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC). Am J Clin Nutr 96(2):345–355PubMedCrossRefGoogle Scholar
  42. 42.
    Willett W, Sampfer MJ (1986) Total energy intake: implications for epidemiological analyses. Am J Epidemiol 124(1):17–27PubMedGoogle Scholar
  43. 43.
    Iwasaki M, Inoue M, Sasazuki S, Miura T, Sawada N, Yamaji T, Shimazu T, Willett WC, Tsugane S (2010) Plasma tea polyphenol levels and subsequent risk of breast cancer among Japanese women: a nested case–control study. Breast Cancer Res Treat 124(3):827–834PubMedCrossRefGoogle Scholar
  44. 44.
    Fink BN, Steck SE, Wolff MS, Britton JA, Kabat GC, Schroeder JC, Teitelbaum SL, Neugut AI, Gammon MD (2007) Dietary flavonoid intake and breast cancer risk among women on Long Island. Am J Epidemiol 165(5):514–523PubMedCrossRefGoogle Scholar
  45. 45.
    Touvier M, Druesne-Pecollo N, Kesse-Guyot E, Andreeva VA, Fezeu L, Galan P, Hercberg S, Latino-Martel P (2013) Dual association between polyphenol intake and breast cancer risk according to alcohol consumption level: a prospective cohort study. Breast Cancer Res Treat 137(1):225–236PubMedCrossRefGoogle Scholar
  46. 46.
    Keinan-Boker L, van der Schouw YT, Grobbee DE, Peeters PH (2004) Dietary phytoestrogens and breast cancer risk. Am J Clin Nutr 79(2):282–288PubMedGoogle Scholar
  47. 47.
    Travis RC, Allen NE, Appleby PN, Spencer EA, Roddam AW, Key TJ (2006) A prospective study of vegetarianism and isoflavone intake in relation to breast cancer risk in British women. Int J Cancer 122(3):705–710CrossRefGoogle Scholar
  48. 48.
    Qin LQ, Xu JY, Wang PY, Hoshi K (2006) Soyfood intake in the prevention of breast cancer risk in women: a meta-analysis of observational epidemiological studies. J Nutr Sci Vitaminol (Tokyo) 52(6):428–436CrossRefGoogle Scholar
  49. 49.
    Cassidy A, Bingham S, Setchell KD (1994) Biological effects of a diet of soy protein rich in isoflavones on the menstrual cycle of premenopausal women. Am J Clin Nutr 60(3):333–340PubMedGoogle Scholar
  50. 50.
    Messina M, Hilakivi-Clarke L (2009) Early intake appears to be the key to the proposed protective effects of soy intake against breast cancer. Nutr Cancer 61(6):792–798PubMedCrossRefGoogle Scholar
  51. 51.
    Suzuki R, Rylander-Rudqvist T, Saji S, Bergkvist L, Adlercreutz H, Wolk A (2008) Dietary lignans and postmenopausal breast cancer risk by oestrogen receptor status: a prospective cohort study of Swedish women. Br J Cancer 98(3):636–640PubMedCrossRefGoogle Scholar
  52. 52.
    Thanos J, Cotterchio M, Boucher BA, Kreiger N, Thompson LU (2006) Adolescent dietary phytoestrogen intake and breast cancer risk (Canada). Cancer Causes Control 17(10):1253–1261PubMedCrossRefGoogle Scholar
  53. 53.
    Goodman MT, Shvetsov YB, Wilkens LR, Franke AA, Le Marchand L, Kakazu KK, Nomura AM, Henderson BE, Kolonel LN (2009) Urinary phytoestrogen excretion and postmenopausal breast cancer risk: the multiethnic cohort study. Cancer Prev Res (Phila) 2(10):887–894CrossRefGoogle Scholar
  54. 54.
    McCann SE, Kulkarni S, Trevisan M, Vito D, Nie J, Edge SB, Muti P, Freudenheim JL (2006) Dietary lignan intakes and risk of breast cancer by tumor estrogen receptor status. Breast Cancer Res Treat 99(3):309–311PubMedCrossRefGoogle Scholar
  55. 55.
    Wang L, Chen J, Thompson LU (2005) The inhibitory effect of flaxseed on the growth and metastasis of estrogen receptor negative human breast cancer xenograftsis attributed to both its lignan and oil components. Int J Cancer 116(5):793–798PubMedCrossRefGoogle Scholar
  56. 56.
    Rinaldi S, Peeters PH, Berrino F et al (2006) IGF-I, IGFBP-3 and breast cancer risk in women: the European Prospective Investigation into Cancer and Nutrition (EPIC). Endocr Relat Cancer 13(2):593–605PubMedCrossRefGoogle Scholar
  57. 57.
    Tabernero J (2007) The role of VEGF and EGFR inhibition: implications for combining anti-VEGF and anti-EGFR agents. Mol Cancer Res 5(3):203–220PubMedCrossRefGoogle Scholar
  58. 58.
    Skeie G, Braaten T, Hjartaker A et al (2009) Use of dietary supplements in the European Prospective Investigation into Cancer and Nutrition Calibration Study. Eur J Clin Nutr 63(Suppl 4):S226–S238PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Raul Zamora-Ros
    • 1
    Email author
  • Pietro Ferrari
    • 2
  • Carlos A. González
    • 1
  • Anne Tjønneland
    • 3
  • Anja Olsen
    • 3
  • Lea Bredsdorff
    • 4
  • Kim Overvad
    • 5
  • Marina Touillaud
    • 6
    • 7
    • 8
  • Florence Perquier
    • 6
    • 7
    • 8
  • Guy Fagherazzi
    • 6
    • 7
    • 8
  • Annekatrin Lukanova
    • 9
  • Kaja Tikk
    • 9
  • Krasimira Aleksandrova
    • 10
  • Heiner Boeing
    • 10
  • Antonia Trichopoulou
    • 11
    • 12
  • Dimitrios Trichopoulos
    • 11
    • 13
    • 14
  • Vardis Dilis
    • 11
  • Giovanna Masala
    • 15
  • Sabina Sieri
    • 16
  • Amalia Mattiello
    • 17
  • Rosario Tumino
    • 18
  • Fulvio Ricceri
    • 41
  • H. Bas Bueno-de-Mesquita
    • 20
    • 21
  • Petra H. M. Peeters
    • 22
    • 23
  • Elisabete Weiderpass
    • 24
    • 25
    • 26
    • 27
  • Guri Skeie
    • 24
  • Dagrun Engeset
    • 24
  • Virginia Menéndez
    • 28
  • Noémie Travier
    • 1
  • Esther Molina-Montes
    • 29
    • 30
  • Pilar Amiano
    • 30
    • 31
  • Maria-Dolores Chirlaque
    • 30
    • 32
  • Aurelio Barricarte
    • 30
    • 33
  • Peter Wallström
    • 34
  • Emily Sonestedt
    • 35
  • Malin Sund
    • 36
  • Rikard Landberg
    • 37
  • Kay-Thee Khaw
    • 38
  • Nicholas J. Wareham
    • 39
  • Ruth C. Travis
    • 40
  • Augustin Scalbert
    • 2
  • Heather A. Ward
    • 23
  • Elio Riboli
    • 19
  • Isabelle Romieu
    • 2
  1. 1.Unit of Nutrition, Environment and CancerCatalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), Avda Gran Via 199-203BarcelonaSpain
  2. 2.Section of Nutrition and MetabolismInternational Agency for Research on Cancer (IARC)LyonFrance
  3. 3.Institute of Cancer Epidemiology, Danish Cancer SocietyCopenhagenDenmark
  4. 4.Technical University of Denmark, National Food InstituteSoeborgDenmark
  5. 5.Section for Epidemiology, Department of Public HealthAarhus UniversityÅrhusDenmark
  6. 6.Centre for Research in Epidemiology and Population Health (CESP)U1018, Nutrition, Hormones and Women’s Health Team, InsermVillejuifFrance
  7. 7.Paris South UniversityVillejuifFrance
  8. 8.Institut Gustave-Roussy (IGR)VillejuifFrance
  9. 9.Department of Cancer EpidemiologyGerman Cancer Research CenterHeidelbergGermany
  10. 10.Department of EpidemiologyGerman Institute of Human Nutrition Potsdam-RehbrückeNuthetalGermany
  11. 11.Hellenic Health FoundationAthensGreece
  12. 12.Department of Hygiene, Epidemiology and Medical StatisticsUniversity of Athens Medical School, WHO Collaborating Center for Food and Nutrition PoliciesAthensGreece
  13. 13.Department of EpidemiologyHarvard School of Public HealthBostonUSA
  14. 14.Bureau of Epidemiologic ResearchAcademy of AthensAthensGreece
  15. 15.Molecular and Nutritional Epidemiology UnitISPO Cancer Prevention and Research InstituteFlorenceItaly
  16. 16.Nutritional Epidemiology UnitFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
  17. 17.Department of Clinical and Experimental MedicineFederico II UniversityNaplesItaly
  18. 18.Cancer Registry and Histopathology Unit“Civile M.P. Arezzo” HospitalRagusaItaly
  19. 19.School of Public HealthImperial CollegeLondonUK
  20. 20.Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
  21. 21.Department of Gastroenterology and HepatologyUniversity Medical Center Utrecht (UMCU)UtrechtThe Netherlands
  22. 22.Julius Center for Health Sciences and Primary CareUniversity Medical Center UtrechtUtrechtThe Netherlands
  23. 23.Department of Epidemiology and BiostatisticsSchool of Public Health, Faculty of Medicine, Imperial CollegeLondonUK
  24. 24.Department of Community MedicineUniversity of TromsøTromsöNorway
  25. 25.Cancer Registry of NorwayOsloNorway
  26. 26.Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
  27. 27.Samfundet FolkhälsanHelsinkiFinland
  28. 28.Public Health DirectorateAsturiasSpain
  29. 29.Andalusian School of Public HealthGranadaSpain
  30. 30.CIBER Epidemiología y Salud Pública (CIBERESP)MadridSpain
  31. 31.Public Health Department of GipuzkoaBasque GovernmentSan SebastiánSpain
  32. 32.Department of EpidemiologyMurcia Regional Health CouncilMurciaSpain
  33. 33.Public Health Institute of NavarraPamplonaSpain
  34. 34.Nutrition Epidemiology Research Group, Department of Clinical SciencesLund UniversityMalmöSweden
  35. 35.Diabetes and Cardiovascular Disease, Genetic Epidemiology, Department of Clinical SciencesLund UniversityMalmöSweden
  36. 36.Departments of Surgical and Perioperative SciencesSurgery and Public Health and Clinical Medicine, Nutrition Research, Umeå UniversityUmeåSweden
  37. 37.Department of Food Science, BioCenterSwedish University of Agriculture ScienceUppsalaSweden
  38. 38.Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
  39. 39.MRC Epidemiology UnitCambridgeUK
  40. 40.Cancer Epidemiology UnitUniversity of OxfordOxfordUK
  41. 41.Human Genetics Foundation (HUGEF)TurinItaly

Personalised recommendations