Breast Cancer Research and Treatment

, Volume 138, Issue 1, pp 81–90 | Cite as

Vimentin, zeb1 and Sip1 are up-regulated in triple-negative and basal-like breast cancers: association with an aggressive tumour phenotype

  • Peeter Karihtala
  • Päivi Auvinen
  • Saila Kauppila
  • Kirsi-Maria Haapasaari
  • Arja Jukkola-Vuorinen
  • Ylermi Soini
Preclinical study

Abstract

In epithelial-to-mesenchymal transition (EMT) epithelial cancer cells achieve mesenchymal features, essentially helping them to metastasize. There is some evidence that EMT could be increased in triple-negative (TNBC) or basal-like breast cancers, although more precise mechanisms considering e.g. EMT-regulating transcription factors are largely unknown. We assessed immunohistochemically vimentin (separately in in situ areas and in invasive cells) as an indicator of EMT, and also EMT-regulating transcription factors zeb1 (separately in stroma and tumour) and Sip1 (in nuclei and cytoplasm) in histological samples of 231 women with local or locally advanced invasive breast cancer. 51.1 % of patients had TNBC and 48.9 % oestrogen and progesterone receptor-positive and HER2 negative breast cancer. Basal-like breast cancers were defined as TNBC that also expressed epidermal growth factor receptor EGFR and/or cytokeratin 5/6. Vimentin expression in invasive cells was higher in TNBCs (p = 9 × 10−12) compared to non-TNBC tumours. Vimentin (p = 2 × 10−6), nuclear Sip1 (p = 0.035) and zeb1 in stroma (p = 0.013) were overexpressed in basal-like cancers compared to non-basal-like TNBCs. In non-TNBC group findings between studied markers and clinicopathological factors were rare. However, in TNBC cases, vimentin expression in invasive cells associated with poor differentiation (p = 0.00007), zeb1 expression in cancer cells with higher grade (p = 0.002), vascular invasion (p = 0.036) and larger T-class (p = 0.027), whereas stromal zeb1 associated with lymphatic vessel invasion (p = 0.036) and vascular invasion (p = 0.039). High nuclear Sip1 expression was prognostic for poor disease-free survival (p = 0.002) in the whole cohort. The current results emphasize the increased role of EMT in TNBC and especially in basal-like breast cancers. These observations also support the role of studied parameters in tumour progression.

Keywords

Epithelial-to-mesenchymal transition Prognosis Transcription factor Triple-negative breast cancer 

Notes

Acknowledgments

Thelma Mäkikyrö foundation (PK), The Orion-Farmos Foundation (PK), The Cancer Society of Finland (PK), The Finnish Anti-tuberculosis Association (YS), Special Government Funding of Kuopio University Hospital (PA) and Cancer Center of University of Eastern Finland (PA, YS) and The Finnish Cultural Foundation are acknowledged for their financial support.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Metzger-Filho O, Tutt A, de Azambuja E et al (2012) Dissecting the heterogeneity of triple-negative breast cancer. J Clin Oncol 30:1879–1987PubMedCrossRefGoogle Scholar
  2. 2.
    Irshad S, Ellis P, Tutt A (2011) Molecular heterogeneity of triple-negative breast cancer and its clinical implications. Curr Opin Oncol 23:566–577PubMedCrossRefGoogle Scholar
  3. 3.
    Foulkes WD, Smith IE, Reis-Filho JS (2010) Triple-negative breast cancer. N Engl J Med 363:1938–1948PubMedCrossRefGoogle Scholar
  4. 4.
    Sarrió D, Rodriguez-Pinilla SM, Hardisson D, Cano A, Moreno-Bueno G, Palacios J (2008) Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res 68:989–997PubMedCrossRefGoogle Scholar
  5. 5.
    Foroni C, Broggini M, Generali D, Damia G (2012) Epithelial-mesenchymal transition and breast cancer: role, molecular mechanisms and clinical impact. Cancer Treat Rev 38:689–697PubMedCrossRefGoogle Scholar
  6. 6.
    Jeong H, Ryu YJ, An J, Lee Y, Kim A (2012) Epithelial-mesenchymal transition in breast cancer correlates with high histological grade and triple-negative phenotype. Histopathology 60:E87–E95PubMedCrossRefGoogle Scholar
  7. 7.
    Savagner P (2010) The epithelial-mesenchymal transition (EMT) phenomenon. Ann Oncol Suppl 7:vii89–vii92CrossRefGoogle Scholar
  8. 8.
    Cattoretti G, Andreola S, Clemente C, D’Amato L, Rilke F (1988) Vimentin and p53 expression on epidermal growth factor receptor-positive, oestrogen receptor-negative breast carcinomas. Br J Cancer 57:353–357PubMedCrossRefGoogle Scholar
  9. 9.
    Grabitz AL, Duncan MK (2012) Focus on molecules: smad interacting protein 1 (Sip1, ZEB2, ZFHX1B). Exp Eye Res 101:105–106PubMedCrossRefGoogle Scholar
  10. 10.
    Wakamatsu N, Yamada Y, Yamada K et al (2001) Mutations in Sip1, encoding smad interacting protein-1, cause a form of Hirschsprung disease. Nat Genet 27:369–370PubMedCrossRefGoogle Scholar
  11. 11.
    Vandewalle C, Comijn J, De Craene B et al (2005) Sip1/ZEB2 induces EMT by repressing genes of different epithelial cell–cell junctions. Nucleic Acids Res 33:6566–6578PubMedCrossRefGoogle Scholar
  12. 12.
    Remacle JE, Kraft H, Lerchner W et al (1999) New mode of DNA binding of multi-zinc finger transcription factors: deltaEF1 family members bind with two hands to two target sites. EMBO J 18:5073–5084PubMedCrossRefGoogle Scholar
  13. 13.
    Postigo AA (2003) Opposing functions of ZEB proteins in the regulation of the TGFbeta/BMP signaling pathway. EMBO J 22:2443–2452PubMedCrossRefGoogle Scholar
  14. 14.
    Vandewalle C, Van Roy F, Berx G (2009) The role of the ZEB family of transcription factors in development and disease. Cell Mol Life Sci 66:773–787PubMedCrossRefGoogle Scholar
  15. 15.
    Gheldof A, Hulpiau P, van Roy F, De Craene B, Berx G (2012) Evolutionary functional analysis and molecular regulation of the ZEB transcription factors. Cell Mol Life Sci 69:2527–2541PubMedCrossRefGoogle Scholar
  16. 16.
    Kim T, Veronese A, Pichiorri F, Lee TJ et al (2011) p53 regulates epithelial-mesenchymal transition through microRNAs targeting zeb1 and ZEB2. J Exp Med 208:875–883PubMedCrossRefGoogle Scholar
  17. 17.
    Takkunen M, Grenman R, Hukkanen M, Korhonen M, García de Herreros A, Virtanen I (2006) Snail-dependent and -independent epithelial-mesenchymal transition in oral squamous carcinoma cells. J Histochem Cytochem 54:1263–1275PubMedCrossRefGoogle Scholar
  18. 18.
    Spaderna S, Schmalhofer O, Wahlbuhl M et al (2008) The transcriptional repressor zeb1 promotes metastasis and loss of cell polarity in cancer. Cancer Res 68:537–544PubMedCrossRefGoogle Scholar
  19. 19.
    Merikallio H, Kaarteenaho R, Pääkkö P, Lehtonen S, Hirvikoski P, Mäkitaro R, Harju T, Soini Y (2011) Zeb1 and twist are more commonly expressed in metastatic than primary lung tumours and show inverse associations with claudins. J Clin Pathol 64:136–140PubMedCrossRefGoogle Scholar
  20. 20.
    Jia B, Liu H, Kong Q, Li B (2012) Overexpression of zeb1 associated with metastasis and invasion in patients with gastric carcinoma. Mol Cell Biochem 366:223–229PubMedCrossRefGoogle Scholar
  21. 21.
    Zhou YM, Cao L, Li B, Zhang RX, Sui CJ, Yin ZF, Yang JM (2012) Clinicopathological significance of zeb1 protein in patients with Hepatocellular Carcinoma. Ann Surg Oncol 19:1700–1706PubMedCrossRefGoogle Scholar
  22. 22.
    Lemma S, Karihtala P, Haapasaari KM et al (2012) Biological roles and prognostic values of the EMT-mediating transcription factors Twist, ZEB1 and Slug in diffuse large B-cell lymphoma. Histopathology (in press)Google Scholar
  23. 23.
    Tavassoli FA, Devilee P (eds) (2003) World Health Organization Classification of tumours. Pathology and genetics of tumours of the breast and female genital organs. IARC Press, Lyon, pp 13–59, 63–73Google Scholar
  24. 24.
    Karihtala P, Mäntyniemi A, Kang SW, Kinnula VL, Soini Y (2003) Peroxiredoxins in breast carcinoma. Clin Cancer Res 9:3418–3424PubMedGoogle Scholar
  25. 25.
    Karihtala P, Kauppila S, Soini Y, Jukkola-Vuorinen A (2011) Oxidative stress and counteracting mechanisms in hormone receptor positive, triple-negative and basal-like breast carcinomas. BMC Cancer 11:262PubMedCrossRefGoogle Scholar
  26. 26.
    Cheang MC, Voduc D, Bajdik C, Leung S, McKinney S, Chia SK, Perou CM, Nielsen TO (2008) Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype. Clin Cancer Res 14:1368–1376PubMedCrossRefGoogle Scholar
  27. 27.
    Nielsen TO, Hsu FD, Jensen K et al (2004) Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res 10:5367–5374PubMedCrossRefGoogle Scholar
  28. 28.
    Al Saleh S, Al Mulla F, Luqmani YA (2011) Estrogen receptor silencing induces epithelial to mesenchymal transition in human breast cancer cells. PLoS ONE 6:e20610PubMedCrossRefGoogle Scholar
  29. 29.
    Kusinska RU, Kordek R, Pluciennik E, Bednarek AK, Piekarski JH, Potemski P (2009) Does vimentin help to delineate the so-called ‘basal type breast cancer’? J Exp Clin Cancer Res 28:118PubMedCrossRefGoogle Scholar
  30. 30.
    Chen MH, Yip GW, Tse GM et al (2008) Expression of basal keratins and vimentin in breast cancers of young women correlates with adverse pathologic parameters. Mod Pathol 21:1183–1191PubMedCrossRefGoogle Scholar
  31. 31.
    Domagala W, Lasota J, Bartkowiak J, Weber K, Osborn M (1990) Vimentinis preferentially expressed in human breast carcinomas with low estrogen receptor and high Ki-67 growth fraction. Am J Pathol 136:219–227PubMedGoogle Scholar
  32. 32.
    Liu T, Zhang X, Shang M, Zhang Y, Xia B, Niu M, Liu Y, Pang D (2012) Dysregulated expression of Slug, vimentin, and E-cadherin correlates with poor clinical outcome in patients with basal-like breast cancer. J Surg Oncol. doi:10.1002/jso.23240 Google Scholar
  33. 33.
    Greenberg S, Rugo HS (2010) Challenging clinical scenarios: treatment of patients with triple-negative or basal-like metastatic breast cancer. Clin Breast Cancer Suppl 2:S20–S29CrossRefGoogle Scholar
  34. 34.
    Bindels S, Mestdagt M, Vandewalle C et al (2006) Regulation of vimentin by Sip1 in human epithelial breast tumor cells. Oncogene 25:4975–4985PubMedCrossRefGoogle Scholar
  35. 35.
    Miura N, Yano T, Shoji F et al (2009) Clinicopathological significance of Sip1-associated epithelial mesenchymal transition in non-small cell lung cancer progression. Anticancer Res 29:4099–4106PubMedGoogle Scholar
  36. 36.
    Gemmill RM, Roche J, Potiron VA et al (2011) Zeb1-responsive genes in non-small cell lung cancer. Cancer Lett 300:66–78PubMedCrossRefGoogle Scholar
  37. 37.
    Soini Y, Tuhkanen H, Sironen R, Virtanen I, Kataja V, Auvinen P, Mannermaa A, Kosma VM (2011) Transcription factors zeb1, twist and snai1 in breast carcinoma. BMC Cancer 16(11):73CrossRefGoogle Scholar
  38. 38.
    Geradts J, de Herreros AG, Su Z, Burchette J, Broadwater G, Bachelder RE (2011) Nuclear Snail1 and nuclear zeb1 protein expression in invasive and intraductal human breast carcinomas. Hum Pathol 42:1125–1131PubMedCrossRefGoogle Scholar
  39. 39.
    Kuroda H, Nakai M, Ohnisi K, Ishida T, Kuroda M, Itoyama S (2010) Vascular invasion in triple-negative carcinoma of the breast identified by endothelial lymphatic and blood vessel markers. Int J Surg Pathol 18:324–329PubMedGoogle Scholar
  40. 40.
    Liu Z, Qi L, Li H, Gao J, Leng X (2012) Zinc finger E-box binding homeobox 1 promotes vasculogenic mimicry in colorectal cancer through induction of epithelial-to-mesenchymal transition. Cancer Sci 103:813–820PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Peeter Karihtala
    • 1
  • Päivi Auvinen
    • 2
  • Saila Kauppila
    • 3
  • Kirsi-Maria Haapasaari
    • 3
  • Arja Jukkola-Vuorinen
    • 1
  • Ylermi Soini
    • 4
  1. 1.Department of Oncology and RadiotherapyOulu University HospitalOuluFinland
  2. 2.Department of OncologyCancer Center of Eastern Finland, Kuopio University HospitalKuopioFinland
  3. 3.Department of PathologyOulu University HospitalOuluFinland
  4. 4.Department of Pathology and Forensic MedicineUniversity of Eastern FinlandKuopioFinland

Personalised recommendations