Breast Cancer Research and Treatment

, Volume 138, Issue 1, pp 1–12 | Cite as

Vaccination for the prevention and treatment of breast cancer with special focus on Her-2/neu peptide vaccines

  • Ursula Wiedermann
  • Adam B. Davis
  • Christoph C. Zielinski
Review

Abstract

Immunologic interventions in a subset of breast cancer patients represent a well-established therapeutic approach reflecting individualized treatment modalities. Thus, the therapeutic administration of monoclonal antibodies targeting tumor-associated antigens (TAA), such as Her-2/neu, represents a milestone in cancer treatment. However, passive antibody administration suffers from several drawbacks, including frequency and long duration of treatment. These undesirables may be avoidable in an approach based on generating active immune responses against these same targets. Only recently has the significance of tumors in relation to their microenvironments been understood as essential for creating an effective cancer vaccine. In particular, the immune system plays an important role in suppressing or promoting tumor formation and growth. Therefore, activation of appropriate triggers (such as induction of Th1 cells, CD8+ T cells, and suppression of regulatory cells in combination with generation of antibodies with anti-tumor activity) is a desirable goal. Current vaccination approaches have concentrated on therapeutic vaccines using certain TAA. Many cancer antigens, including breast cancer antigens, have been described and also given priority ranking for use as vaccine antigens by the US National Cancer Institute. One of the TAA antigens which has been thoroughly examined in numerous trials is Her-2/neu. This review will discuss delivery systems for this antigen with special focus on T and B cell peptide vaccines. Attention will be given to their advantages and limitations, as well as the use of certain adjuvants to improve anti-cancer responses.

Keywords

Vaccination Breast cancer Tumor associated antigens Her-2/neu T cell peptides B cell peptides T-regulatory cells Adjuvants Th1-responses Antibodies 

References

  1. 1.
    Bray F, McCarron P, Parkin DM (2004) The changing global patterns of female breast cancer incidence and mortality. Breast Cancer Res 6(6):229–239PubMedCrossRefGoogle Scholar
  2. 2.
    Ladjemi MZ, Jacot W, Chardes T, Pelegrin A, Navarro-Teulon I (2010) Anti-HER2 vaccines: new prospects for breast cancer therapy. Cancer Immunol Immunother 59(9):1295–1312PubMedCrossRefGoogle Scholar
  3. 3.
    Egeblad M, Nakasone ES, Werb Z (2010) Tumors as organs: complex tissues that interface with the entire organism. Dev Cell 18(6):884–901PubMedCrossRefGoogle Scholar
  4. 4.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674PubMedCrossRefGoogle Scholar
  5. 5.
    Disis ML (2010) Immune regulation of cancer. J Clin Oncol 28(29):4531–4538PubMedCrossRefGoogle Scholar
  6. 6.
    Olkhanud PB, Damdinsuren B, Bodogai M, Gress RE, Sen R, Wejksza K, Malchinkhuu E, Wersto RP, Biragyn A (2011) Tumor-evoked regulatory B cells promote breast cancer metastasis by converting resting CD4(+) T cells to T-regulatory cells. Cancer Res 71(10):3505–3515PubMedCrossRefGoogle Scholar
  7. 7.
    Tan AR, Alexe G, Reiss M (2009) Transforming growth factor-beta signaling: emerging stem cell target in metastatic breast cancer? Breast Cancer Res Treat 115(3):453–495PubMedCrossRefGoogle Scholar
  8. 8.
    Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M et al (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10(9):942–949PubMedCrossRefGoogle Scholar
  9. 9.
    Bates GJ, Fox SB, Han C, Leek RD, Garcia JF, Harris AL, Banham AH (2006) Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J Clin Oncol 24(34):5373–5380PubMedCrossRefGoogle Scholar
  10. 10.
    Roepman P, Schuurman A, Delahaye LJ, Witteveen AT, Floore AN, Glas AM (2009) A gene expression profile for detection of sufficient tumour cells in breast tumour tissue: microarray diagnosis eligibility. BMC Med Genomics 2:52PubMedCrossRefGoogle Scholar
  11. 11.
    Kreike B, Hart G, Bartelink H, van de Vijver MJ (2010) Analysis of breast cancer related gene expression using natural splines and the Cox proportional hazard model to identify prognostic associations. Breast Cancer Res Treat 122(3):711–720PubMedCrossRefGoogle Scholar
  12. 12.
    Roepman P, Jassem J, Smit EF, Muley T, Niklinski J, van de Velde T, Witteveen AT, Rzyman W, Floore A, Burgers S et al (2009) An immune response enriched 72-gene prognostic profile for early-stage non-small-cell lung cancer. Clin Cancer Res 15(1):284–290PubMedCrossRefGoogle Scholar
  13. 13.
    Vonka V (2012) Comments on therapeutic cancer vaccines. Immunotherapy 4(2):133–135PubMedCrossRefGoogle Scholar
  14. 14.
    Algarra I, Garcia-Lora A, Cabrera T, Ruiz-Cabello F, Garrido F (2004) The selection of tumor variants with altered expression of classical and nonclassical MHC class I molecules: implications for tumor immune escape. Cancer Immunol Immunother 53(10):904–910PubMedCrossRefGoogle Scholar
  15. 15.
    Igney FH, Krammer PH (2002) Immune escape of tumors: apoptosis resistance and tumor counterattack. J Leukoc Biol 71(6):907–920PubMedGoogle Scholar
  16. 16.
    Vertuani S, Triulzi C, Roos AK, Charo J, Norell H, Lemonnier F, Pisa P, Seliger B, Kiessling R (2009) HER-2/neu mediated down-regulation of MHC class I antigen processing prevents CTL-mediated tumor recognition upon DNA vaccination in HLA-A2 transgenic mice. Cancer Immunol Immunother 58(5):653–664PubMedCrossRefGoogle Scholar
  17. 17.
    Giorda E, Sibilio L, Martayan A, Moretti S, Venturo I, Mottolese M, Ferrara GB, Cappellacci S, Eibenschutz L, Catricala C et al (2003) The antigen processing machinery of class I human leukocyte antigens: linked patterns of gene expression in neoplastic cells. Cancer Res 63(14):4119–4127PubMedGoogle Scholar
  18. 18.
    Park JW, Melisko ME, Esserman LJ, Jones LA, Wollan JB, Sims R (2007) Treatment with autologous antigen-presenting cells activated with the HER-2 based antigen Lapuleucel-T: results of a phase I study in immunologic and clinical activity in HER-2 overexpressing breast cancer. J Clin Oncol 25(24):3680–3687PubMedCrossRefGoogle Scholar
  19. 19.
    Czerniecki BJ, Roses RE, Koski GK (2007) Development of vaccines for high-risk ductal carcinoma in situ of the breast. Cancer Res 67(14):6531–6534PubMedCrossRefGoogle Scholar
  20. 20.
    Melief CJ (2008) Cancer immunotherapy by dendritic cells. Immunity 29(3):372–383PubMedCrossRefGoogle Scholar
  21. 21.
    Wang B, Zaidi N, He LZ, Zhang L, Kuroiwa JM, Keler T, Steinman RM (2012) Targeting of the non-mutated tumor antigen HER2/neu to mature dendritic cells induces an integrated immune response that protects against breast cancer in mice. Breast Cancer Res 14(2):R39PubMedCrossRefGoogle Scholar
  22. 22.
    Signori E, Iurescia S, Massi E, Fioretti D, Chiarella P, De Robertis M, Rinaldi M, Tonon G, Fazio VM (2010) DNA vaccination strategies for anti-tumour effective gene therapy protocols. Cancer Immunol Immunother 59(10):1583–1591PubMedCrossRefGoogle Scholar
  23. 23.
    Disis ML, Schiffman K, Guthrie K, Salazar LG, Knutson KL, Goodell V, dela Rosa C, Cheever MA (2004) Effect of dose on immune response in patients vaccinated with an her-2/neu intracellular domain protein-based vaccine. J Clin Oncol 22(10):1916–1925PubMedCrossRefGoogle Scholar
  24. 24.
    Kitano S, Kageyama S, Nagata Y, Miyahara Y, Hiasa A, Naota H, Okumura S, Imai H, Shiraishi T, Masuya M et al (2006) HER2-specific T-cell immune responses in patients vaccinated with truncated HER2 protein complexed with nanogels of cholesteryl pullulan. Clin Cancer Res 12(24):7397–7405PubMedCrossRefGoogle Scholar
  25. 25.
    Kageyama S, Kitano S, Hirayama M, Nagata Y, Imai H, Shiraishi T, Akiyoshi K, Scott AM, Murphy R, Hoffman EW et al (2008) Humoral immune responses in patients vaccinated with 1–146 HER2 protein complexed with cholesteryl pullulan nanogel. Cancer Sci 99(3):601–607PubMedCrossRefGoogle Scholar
  26. 26.
    Hamilton E, Blackwell K, Hobeika AC, Clay TM, Broadwater G, Ren XR, Chen W, Castro H, Lehmann F, Spector N et al (2012) Phase I clinical trial of HER2-specific immunotherapy with concomitant HER2 kinase inhibition. J Trans Med 10:28CrossRefGoogle Scholar
  27. 27.
    Disis ML, Gooley TA, Rinn K, Davis D, Piepkorn M, Cheever MA, Knutson KL, Schiffman K (2002) Generation of T-cell immunity to the HER-2/neu protein after active immunization with HER-2/neu peptide-based vaccines. J Clin Oncol 20(11):2624–2632PubMedCrossRefGoogle Scholar
  28. 28.
    Disis ML, Goodell V, Schiffman K, Knutson KL (2004) Humoral epitope-spreading following immunization with a HER-2/neu peptide based vaccine in cancer patients. J Clin Immunol 24(5):571–578PubMedCrossRefGoogle Scholar
  29. 29.
    Mittendorf EA, Storrer CE, Foley RJ, Harris K, Jama Y, Shriver CD, Ponniah S, Peoples GE (2006) Evaluation of the HER2/neu-derived peptide GP2 for use in a peptide-based breast cancer vaccine trial. Cancer 106(11):2309–2317PubMedCrossRefGoogle Scholar
  30. 30.
    Mittendorf EA, Clifton GT, Holmes JP, Clive KS, Patil R, Benavides LC, Gates JD, Sears AK, Stojadinovic A, Ponniah S et al (2012) Clinical trial results of the HER-2/neu (E75) vaccine to prevent breast cancer recurrence in high-risk patients: from US Military Cancer Institute Clinical Trials Group Study I-01 and I-02. Cancer 118(10):2594–2602PubMedCrossRefGoogle Scholar
  31. 31.
    Dakappagari NK, Pyles J, Parihar R, Carson WE, Young DC, Kaumaya PT (2003) A chimeric multi-human epidermal growth factor receptor-2 B cell epitope peptide vaccine mediates superior antitumor responses. J Immunol 170(8):4242–4253PubMedGoogle Scholar
  32. 32.
    Wiedermann U, Wiltschke C, Jasinska J, Kundi M, Zurbriggen R, Garner-Spitzer E, Bartsch R, Steger G, Pehamberger H, Scheiner O et al (2010) A virosomal formulated Her-2/neu multi-peptide vaccine induces Her-2/neu-specific immune responses in patients with metastatic breast cancer: a phase I study. Breast Cancer Res Treat 119(3):673–683PubMedCrossRefGoogle Scholar
  33. 33.
    Maeda K, Hazama S, Tokuno K, Kan S, Maeda Y, Watanabe Y, Kamei R, Shindo Y, Maeda N, Yoshimura K et al (2011) Impact of chemotherapy for colorectal cancer on regulatory T-cells and tumor immunity. Anticancer Res 31(12):4569–4574PubMedGoogle Scholar
  34. 34.
    Coveler AL, Goodell V, Webster DJ, Salazar LG, Fintak PA, Childs JS, Higgins DM, Disis ML (2009) Common adjuvant breast cancer therapies do not inhibit cancer vaccine induced T cell immunity. Breast Cancer Res Treat 113(1):95–100PubMedCrossRefGoogle Scholar
  35. 35.
    Nowak AK, Lake RA, Robinson BW (2006) Combined chemoimmunotherapy of solid tumours: improving vaccines? Adv Drug Deliv Rev 58(8):975–990PubMedCrossRefGoogle Scholar
  36. 36.
    Reits EA, Hodge JW, Herberts CA, Groothuis TA, Chakraborty M, Wansley EK, Camphausen K, Luiten RM, de Ru AH, Neijssen J et al (2006) Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med 203(5):1259–1271PubMedCrossRefGoogle Scholar
  37. 37.
    Mozaffari F, Lindemalm C, Choudhury A, Granstam-Bjorneklett H, Lekander M, Nilsson B, Ojutkangas ML, Osterborg A, Bergkvist L, Mellstedt H (2009) Systemic immune effects of adjuvant chemotherapy with 5-fluorouracil, epirubicin and cyclophosphamide and/or radiotherapy in breast cancer: a longitudinal study. Cancer Immunol Immunother 58(1):111–120PubMedCrossRefGoogle Scholar
  38. 38.
    Mittendorf EA, Storrer CE, Shriver CD, Ponniah S, Peoples GE (2006) Investigating the combination of trastuzumab and HER2/neu peptide vaccines for the treatment of breast cancer. Ann Surg Oncol 13(8):1085–1098PubMedCrossRefGoogle Scholar
  39. 39.
    Disis ML, Wallace DR, Gooley TA, Dang Y, Slota M, Lu H, Coveler AL, Childs JS, Higgins DM, Fintak PA et al (2009) Concurrent trastuzumab and HER2/neu-specific vaccination in patients with metastatic breast cancer. J Clin Oncol 27(28):4685–4692PubMedCrossRefGoogle Scholar
  40. 40.
    Lollini PL, Cavallo F, Nanni P, Forni G (2006) Vaccines for tumour prevention. Nat Rev Cancer 6(3):204–216PubMedCrossRefGoogle Scholar
  41. 41.
    Vergati M, Intrivici C, Huen NY, Schlom J, Tsang KY (2010) Strategies for cancer vaccine development. J Biomed Biotechnol 2010. doi:10.1155/2010/596432
  42. 42.
    Finn OJ (2008) Cancer immunology. New Engl J Med 358(25):2704–2715PubMedCrossRefGoogle Scholar
  43. 43.
    Cheever MA, Allison JP, Ferris AS, Finn OJ, Hastings BM, Hecht TT, Mellman I, Prindiville SA, Viner JL, Weiner LM et al (2009) The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res 15(17):5323–5337PubMedCrossRefGoogle Scholar
  44. 44.
    Yuan S, Shi C, Liu L, Han W (2010) MUC1-based recombinant Bacillus Calmette-Guerin vaccines as candidates for breast cancer immunotherapy. Expert Opin Biol Ther 10(7):1037–1048PubMedCrossRefGoogle Scholar
  45. 45.
    Gilewski T, Adluri S, Ragupathi G, Zhang S, Yao TJ, Panageas K, Moynahan M, Houghton A, Norton L, Livingston PO (2000) Vaccination of high-risk breast cancer patients with mucin-1 (MUC1) keyhole limpet hemocyanin conjugate plus QS-21. Clin Cancer Res 6(5):1693–1701PubMedGoogle Scholar
  46. 46.
    Curigliano G, Rescigno M, Goldhirsch A (2007) Immunology and breast cancer: therapeutic cancer vaccines. Breast 16(Suppl 2):S20–S26PubMedCrossRefGoogle Scholar
  47. 47.
    Mohebtash M, Tsang KY, Madan RA, Huen NY, Poole DJ, Jochems C, Jones J, Ferrara T, Heery CR, Arlen PM et al (2011) A pilot study of MUC-1/CEA/TRICOM poxviral-based vaccine in patients with metastatic breast and ovarian cancer. Clin Cancer Res 17(22):7164–7173PubMedCrossRefGoogle Scholar
  48. 48.
    Svane IM, Pedersen AE, Johnsen HE, Nielsen D, Kamby C, Gaarsdal E, Nikolajsen K, Buus S, Claesson MH (2004) Vaccination with p53-peptide-pulsed dendritic cells, of patients with advanced breast cancer: report from a phase I study. Cancer Immunol Immunother 53(7):633–641PubMedCrossRefGoogle Scholar
  49. 49.
    Met O, Balslev E, Flyger H, Svane IM (2011) High immunogenic potential of p53 mRNA-transfected dendritic cells in patients with primary breast cancer. Breast Cancer Res Treat 125(2):395–406PubMedCrossRefGoogle Scholar
  50. 50.
    Marshall J (2003) Carcinoembryonic antigen-based vaccines. Semin Oncol 30(3 Suppl 8):30–36PubMedCrossRefGoogle Scholar
  51. 51.
    Liu JP, Chen W, Schwarer AP, Li H (2010) Telomerase in cancer immunotherapy. Biochim Biophys Acta 1805(1):35–42PubMedGoogle Scholar
  52. 52.
    Hunger RE, Kernland Lang K, Markowski CJ, Trachsel S, Moller M, Eriksen JA, Rasmussen AM, Braathen LR, Gaudernack G (2011) Vaccination of patients with cutaneous melanoma with telomerase-specific peptides. Cancer Immunol Immunother 60(11):1553–1564PubMedCrossRefGoogle Scholar
  53. 53.
    Ju T, Lanneau GS, Gautam T, Wang Y, Xia B, Stowell SR, Willard MT, Wang W, Xia JY, Zuna RE et al (2008) Human tumor antigens Tn and sialyl Tn arise from mutations in Cosmc. Cancer Res 68(6):1636–1646PubMedCrossRefGoogle Scholar
  54. 54.
    Miles DW, Towlson KE, Graham R, Reddish M, Longenecker BM, Taylor-Papadimitriou J, Rubens RD (1996) A randomised phase II study of sialyl-Tn and DETOX-B adjuvant with or without cyclophosphamide pretreatment for the active specific immunotherapy of breast cancer. Br J Cancer 74(8):1292–1296PubMedCrossRefGoogle Scholar
  55. 55.
    MacLean GD, Miles DW, Rubens RD, Reddish MA, Longenecker BM (1996) Enhancing the effect of THERATOPE STn-KLH cancer vaccine in patients with metastatic breast cancer by pretreatment with low-dose intravenous cyclophosphamide. J Immunother Emphasis Tumor Immunol 19(4):309–316PubMedCrossRefGoogle Scholar
  56. 56.
    Miles D, Roche H, Martin M, Perren TJ, Cameron DA, Glaspy J, Dodwell D, Parker J, Mayordomo J, Tres A et al (2011) Phase III multicenter clinical trial of the sialyl-TN (STn)-keyhole limpet hemocyanin (KLH) vaccine for metastatic breast cancer. Oncologist 16(8):1092–1100PubMedCrossRefGoogle Scholar
  57. 57.
    Mkrtichyan M, Ghochikyan A, Loukinov D, Davtyan H, Ichim TE, Cribbs DH, Lobanenkov VV, Agadjanyan MG (2008) DNA, but not protein vaccine based on mutated BORIS antigen significantly inhibits tumor growth and prolongs the survival of mice. Gene Ther 15(1):61–64PubMedCrossRefGoogle Scholar
  58. 58.
    Luo Y, Zhou H, Mizutani M, Mizutani N, Reisfeld RA, Xiang R (2003) Transcription factor Fos-related antigen 1 is an effective target for a breast cancer vaccine. Proc Natl Acad Sci USA 100(15):8850–8855PubMedCrossRefGoogle Scholar
  59. 59.
    Ross JS, Fletcher JA (1998) The HER-2/neu oncogene in breast cancer: prognostic factor, predictive factor, and target for therapy. Oncologist 3(4):237–252PubMedGoogle Scholar
  60. 60.
    Gravalos C, Jimeno A (2008) HER2 in gastric cancer: a new prognostic factor and a novel therapeutic target. Ann Oncol 19(9):1523–1529PubMedCrossRefGoogle Scholar
  61. 61.
    Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235(4785):177–182PubMedCrossRefGoogle Scholar
  62. 62.
    Burgess AW, Cho HS, Eigenbrot C, Ferguson KM, Garrett TP, Leahy DJ, Lemmon MA, Sliwkowski MX, Ward CW, Yokoyama S (2003) An open-and-shut case? Recent insights into the activation of EGF/ErbB receptors. Mol Cell 12(3):541–552PubMedCrossRefGoogle Scholar
  63. 63.
    Yarden Y (2001) Biology of HER2 and its importance in breast cancer. Oncology 61(Suppl 2):1–13PubMedCrossRefGoogle Scholar
  64. 64.
    Nahta R, Esteva FJ (2006) Herceptin: mechanisms of action and resistance. Cancer Lett 232(2):123–138PubMedCrossRefGoogle Scholar
  65. 65.
    Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, Lordick F, Ohtsu A, Omuro Y, Satoh T et al (2010) Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 376(9742):687–697PubMedCrossRefGoogle Scholar
  66. 66.
    Baselga J, Bradbury I, Eidtmann H, Di Cosimo S, de Azambuja E, Aura C, Gomez H, Dinh P, Fauria K, Van Dooren V et al (2012) Lapatinib with trastuzumab for HER2-positive early breast cancer (NeoALTTO): a randomised, open-label, multicentre, phase 3 trial. Lancet 379(9816):633–640PubMedCrossRefGoogle Scholar
  67. 67.
    Blackwell KL, Burstein HJ, Storniolo AM, Rugo HS, Sledge G, Aktan G, Ellis C, Florance A, Vukelja S, Bischoff J et al (2012) Overall survival benefit with lapatinib in combination with trastuzumab for patients with human epidermal growth factor receptor 2-positive metastatic breast cancer: final results from the EGF104900 study. J Clin Oncol 30(21):2585–2592PubMedCrossRefGoogle Scholar
  68. 68.
    Baselga J, Swain SM (2010) CLEOPATRA: a phase III evaluation of pertuzumab and trastuzumab for HER2-positive metastatic breast cancer. Clin Breast Cancer 10(6):489–491PubMedCrossRefGoogle Scholar
  69. 69.
    Murphy CG, Morris PG (2012) Recent advances in novel targeted therapies for HER2-positive breast cancer. Anticancer Drugs 23(8):765–776PubMedCrossRefGoogle Scholar
  70. 70.
    Mittendorf EA, Alatrash G, Xiao H, Clifton GT, Murray JL, Peoples GE (2011) Breast cancer vaccines: ongoing National Cancer Institute-registered clinical trials. Expert Rev Vaccines 10(6):755–774PubMedCrossRefGoogle Scholar
  71. 71.
    Curcio C, Khan AS, Amici A, Spadaro M, Quaglino E, Cavallo F, Forni G, Draghia-Akli R (2008) DNA immunization using constant-current electroporation affords long-term protection from autochthonous mammary carcinomas in cancer-prone transgenic mice. Cancer Gene Ther 15(2):108–114PubMedCrossRefGoogle Scholar
  72. 72.
    Aurisicchio L, Peruzzi D, Conforti A, Dharmapuri S, Biondo A, Giampaoli S, Fridman A, Bagchi A, Winkelmann CT, Gibson R et al (2009) Treatment of mammary carcinomas in HER-2 transgenic mice through combination of genetic vaccine and an agonist of Toll-like receptor 9. Clin Cancer Res 15(5):1575–1584PubMedCrossRefGoogle Scholar
  73. 73.
    Fioretti D, Iurescia S, Fazio VM, Rinaldi M (2010) DNA vaccines: developing new strategies against cancer. J Biomed Biotechnol 2010:174378PubMedCrossRefGoogle Scholar
  74. 74.
    Cappello P, Triebel F, Iezzi M, Caorsi C, Quaglino E, Lollini PL, Amici A, Di Carlo E, Musiani P, Giovarelli M et al (2003) LAG-3 enables DNA vaccination to persistently prevent mammary carcinogenesis in HER-2/neu transgenic BALB/c mice. Cancer Res 63(10):2518–2525PubMedGoogle Scholar
  75. 75.
    Chang SY, Lee KC, Ko SY, Ko HJ, Kang CY (2004) Enhanced efficacy of DNA vaccination against Her-2/neu tumor antigen by genetic adjuvants. Int J Cancer 111(1):86–95PubMedCrossRefGoogle Scholar
  76. 76.
    Seavey MM, Pan ZK, Maciag PC, Wallecha A, Rivera S, Paterson Y, Shahabi V (2009) A novel human Her-2/neu chimeric molecule expressed by Listeria monocytogenes can elicit potent HLA-A2 restricted CD8-positive T cell responses and impact the growth and spread of Her-2/neu-positive breast tumors. Clin Cancer Res 15(3):924–932PubMedCrossRefGoogle Scholar
  77. 77.
    Norell H, Poschke I, Charo J, Wei WZ, Erskine C, Piechocki MP, Knutson KL, Bergh J, Lidbrink E, Kiessling R (2010) Vaccination with a plasmid DNA encoding HER-2/neu together with low doses of GM-CSF and IL-2 in patients with metastatic breast carcinoma: a pilot clinical trial. J Trans Med 8:53CrossRefGoogle Scholar
  78. 78.
    Melief CJ, van der Burg SH (2008) Immunotherapy of established (pre)malignant disease by synthetic long peptide vaccines. Nat Rev Cancer 8(5):351–360PubMedCrossRefGoogle Scholar
  79. 79.
    Perez SA, von Hofe E, Kallinteris NL, Gritzapis AD, Peoples GE, Papamichail M, Baxevanis CN (2010) A new era in anticancer peptide vaccines. Cancer 116(9):2071–2080PubMedGoogle Scholar
  80. 80.
    Obst R, van Santen HM, Melamed R, Kamphorst AO, Benoist C, Mathis D (2007) Sustained antigen presentation can promote an immunogenic T cell response, like dendritic cell activation. Proc Natl Acad Sci USA 104(39):15460–15465PubMedCrossRefGoogle Scholar
  81. 81.
    Salazar LG, Coveler AL, Swensen RE, Gooley TA, Goodell V, Schiffman K, Disis ML (2007) Kinetics of tumor-specific T-cell response development after active immunization in patients with HER-2/neu overexpressing cancers. Clin Immunol 125(3):275–280PubMedCrossRefGoogle Scholar
  82. 82.
    Holmes JP, Benavides LC, Gates JD, Carmichael MG, Hueman MT, Mittendorf EA, Murray JL, Amin A, Craig D, von Hofe E et al (2008) Results of the first phase I clinical trial of the novel II-key hybrid preventive HER-2/neu peptide (AE37) vaccine. J Clin Oncol 26(20):3426–3433PubMedCrossRefGoogle Scholar
  83. 83.
    Mittendorf EA, Holmes JP, Murray JL, von Hofe E, Peoples GE (2009) CD4+ T cells in antitumor immunity: utility of an li-key HER2/neu hybrid peptide vaccine (AE37). Expert Opin Biol Ther 9(1):71–78PubMedCrossRefGoogle Scholar
  84. 84.
    Peoples GE, Gurney JM, Hueman MT, Woll MM, Ryan GB, Storrer CE, Fisher C, Shriver CD, Ioannides CG, Ponniah S (2005) Clinical trial results of a HER2/neu (E75) vaccine to prevent recurrence in high-risk breast cancer patients. J Clin Oncol 23(30):7536–7545PubMedCrossRefGoogle Scholar
  85. 85.
    Holmes JP, Clifton GT, Patil R, Benavides LC, Gates JD, Stojadinovic A, Mittendorf EA, Ponniah S, Peoples GE (2011) Use of booster inoculations to sustain the clinical effect of an adjuvant breast cancer vaccine: from US Military Cancer Institute Clinical Trials Group Study I-01 and I-02. Cancer 117(3):463–471PubMedCrossRefGoogle Scholar
  86. 86.
    Benavides LC, Sears AK, Gates JD, Clifton GT, Clive KS, Carmichael MG, Holmes JP, Mittendorf EA, Ponniah S, Peoples GE (2011) Comparison of different HER2/neu vaccines in adjuvant breast cancer trials: implications for dosing of peptide vaccines. Expert Rev Vaccines 10(2):201–210PubMedCrossRefGoogle Scholar
  87. 87.
    Yip YL, Smith G, Koch J, Dubel S, Ward RL (2001) Identification of epitope regions recognized by tumor inhibitory and stimulatory anti-ErbB-2 monoclonal antibodies: implications for vaccine design. J Immunol 166(8):5271–5278PubMedGoogle Scholar
  88. 88.
    Garrett JT, Rawale S, Allen SD, Phillips G, Forni G, Morris JC, Kaumaya PT (2007) Novel engineered trastuzumab conformational epitopes demonstrate in vitro and in vivo antitumor properties against HER-2/neu. J Immunol 178(11):7120–7131PubMedGoogle Scholar
  89. 89.
    Riemer AB, Klinger M, Wagner S, Bernhaus A, Mazzucchelli L, Pehamberger H, Scheiner O, Zielinski CC, Jensen-Jarolim E (2004) Generation of Peptide mimics of the epitope recognized by trastuzumab on the oncogenic protein Her-2/neu. J Immunol 173(1):394–401PubMedGoogle Scholar
  90. 90.
    Riemer AB, Kraml G, Scheiner O, Zielinski CC, Jensen-Jarolim E (2005) Matching of trastuzumab (Herceptin) epitope mimics onto the surface of Her-2/neu—a new method of epitope definition. Mol Immunol 42(9):1121–1124PubMedCrossRefGoogle Scholar
  91. 91.
    Miyako H, Kametani Y, Katano I, Ito R, Tsuda B, Furukawa A, Saito Y, Ishikawa D, Ogino K, Sasaki S et al (2011) Antitumor effect of new HER2 peptide vaccination based on B cell epitope. Anticancer Res 31(10):3361–3368PubMedGoogle Scholar
  92. 92.
    Jasinska J, Wagner S, Radauer C, Sedivy R, Brodowicz T, Wiltschke C, Breiteneder H, Pehamberger H, Scheiner O, Wiedermann U et al (2003) Inhibition of tumor cell growth by antibodies induced after vaccination with peptides derived from the extracellular domain of Her-2/neu. Int J Cancer 107(6):976–983PubMedCrossRefGoogle Scholar
  93. 93.
    Wagner S, Jasinska J, Breiteneder H, Kundi M, Pehamberger H, Scheiner O, Zielinski CC, Wiedermann U (2007) Delayed tumor onset and reduced tumor growth progression after immunization with a Her-2/neu multi-peptide vaccine and IL-12 in c-neu transgenic mice. Breast Cancer Res Treat 106(1):29–38PubMedCrossRefGoogle Scholar
  94. 94.
    Moser C, Amacker M, Zurbriggen R (2011) Influenza virosomes as a vaccine adjuvant and carrier system. Expert Rev Vaccines 10(4):437–446PubMedCrossRefGoogle Scholar
  95. 95.
    Decker T, Fischer G, Bucke W, Bucke P, Stotz F, Gruneberger A, Gropp-Meier M, Wiedemann G, Pfeiffer C, Peschel C et al (2012) Increased number of regulatory T cells (T-regs) in the peripheral blood of patients with Her-2/neu-positive early breast cancer. J Cancer Res Clin Oncol 138(11):1945–1950PubMedCrossRefGoogle Scholar
  96. 96.
    Generali D, Bates G, Berruti A, Brizzi MP, Campo L, Bonardi S, Bersiga A, Allevi G, Milani M, Aguggini S et al (2009) Immunomodulation of FOXP3+ regulatory T cells by the aromatase inhibitor letrozole in breast cancer patients. Clin Cancer Res 15(3):1046–1051PubMedCrossRefGoogle Scholar
  97. 97.
    Horlock C, Stott B, Dyson PJ, Morishita M, Coombes RC, Savage P, Stebbing J (2009) The effects of trastuzumab on the CD4+CD25+FoxP3+ and CD4+IL17A+ T-cell axis in patients with breast cancer. Br J Cancer 100(7):1061–1067PubMedCrossRefGoogle Scholar
  98. 98.
    Dubensky TW Jr, Reed SG (2010) Adjuvants for cancer vaccines. Semin Immunol 22(3):155–161PubMedCrossRefGoogle Scholar
  99. 99.
    Poltl-Frank F, Zurbriggen R, Helg A, Stuart F, Robinson J, Gluck R, Pluschke G (1999) Use of reconstituted influenza virus virosomes as an immunopotentiating delivery system for a peptide-based vaccine. Clin Exp Immunol 117(3):496–503PubMedCrossRefGoogle Scholar
  100. 100.
    Ott G, Barchfeld GL, Van Nest G (1995) Enhancement of humoral response against human influenza vaccine with the simple submicron oil/water emulsion adjuvant MF59. Vaccine 13(16):1557–1562PubMedCrossRefGoogle Scholar
  101. 101.
    Garcon N, Morel S, Didierlaurent A, Descamps D, Wettendorff M, Van Mechelen M (2011) Development of an AS04-adjuvanted HPV vaccine with the adjuvant system approach. BioDrugs 25(4):217–226PubMedCrossRefGoogle Scholar
  102. 102.
    Krieg AM (2008) Toll-like receptor 9 (TLR9) agonists in the treatment of cancer. Oncogene 27(2):161–167PubMedCrossRefGoogle Scholar
  103. 103.
    Brichard VG, Lejeune D (2008) Cancer immunotherapy targeting tumour-specific antigens: towards a new therapy for minimal residual disease. Expert Opin Biol Ther 8(7):951–968PubMedCrossRefGoogle Scholar
  104. 104.
    den Haan JM, Kraal G, Bevan MJ (2007) Cutting edge: lipopolysaccharide induces IL-10-producing regulatory CD4+ T cells that suppress the CD8+ T cell response. J Immunol 178(9):5429–5433Google Scholar
  105. 105.
    Schabowsky RH, Madireddi S, Sharma R, Yolcu ES, Shirwan H (2007) Targeting CD4+CD25+FoxP3+ regulatory T-cells for the augmentation of cancer immunotherapy. Curr Opin Investig Drugs 8(12):1002–1008PubMedGoogle Scholar
  106. 106.
    Sabel MS, Su G, Griffith KA, Chang AE (2010) Intratumoral delivery of encapsulated IL-12, IL-18 and TNF-alpha in a model of metastatic breast cancer. Breast Cancer Res Treat 122(2):325–336PubMedCrossRefGoogle Scholar
  107. 107.
    Liu G, Yang W, Guo M, Liu X, Huang N, Li D, Jiang Z, Zhang W, Su H, Liu Z et al (2012) Effective modulation of CD4(+)CD25 (+high) regulatory T and NK cells in malignant patients by combination of interferon-alpha and interleukin-2. Cancer Immunol Immunother 61(12):2357–2366. doi:10.1007/s00262-012-1297-2 PubMedCrossRefGoogle Scholar
  108. 108.
    Gulley JL, Madan RA, Arlen PM (2007) Enhancing efficacy of therapeutic vaccinations by combination with other modalities. Vaccine 25(Suppl 2):B89–B96PubMedCrossRefGoogle Scholar
  109. 109.
    Weiss VL, Lee TH, Song H, Kouo TS, Black CM, Sgouros G, Jaffee EM, Armstrong TD (2012) Trafficking of high avidity HER-2/neu-specific T cells into HER-2/neu-expressing tumors after depletion of effector/memory-like regulatory T cells. PLoS ONE 7(2):e31962PubMedCrossRefGoogle Scholar
  110. 110.
    Emens LA, Asquith JM, Leatherman JM, Kobrin BJ, Petrik S, Laiko M, Levi J, Daphtary MM, Biedrzycki B, Wolff AC et al (2009) Timed sequential treatment with cyclophosphamide, doxorubicin, and an allogeneic granulocyte-macrophage colony-stimulating factor-secreting breast tumor vaccine: a chemotherapy dose-ranging factorial study of safety and immune activation. J Clin Oncol 27(35):5911–5918PubMedCrossRefGoogle Scholar
  111. 111.
    Bakema JE, van Egmond M (2011) Immunoglobulin A: a next generation of therapeutic antibodies? mAbs 3(4):352–361Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ursula Wiedermann
    • 1
  • Adam B. Davis
    • 2
  • Christoph C. Zielinski
    • 3
  1. 1.Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Immunology & InfectiologyMedical University of ViennaViennaAustria
  2. 2.Truman State UniversityKirksvilleUSA
  3. 3.Clinical Division of Oncology, Department of Medicine IComprehensive Cancer Center, Medical University of Vienna and General HospitalViennaAustria

Personalised recommendations