Advertisement

Breast Cancer Research and Treatment

, Volume 138, Issue 1, pp 37–45 | Cite as

Frequent copy number gains at 1q21 and 1q32 are associated with overexpression of the ETS transcription factors ETV3 and ELF3 in breast cancer irrespective of molecular subtypes

  • Bárbara Mesquita
  • Paula Lopes
  • Ana Rodrigues
  • Deolinda Pereira
  • Mariana Afonso
  • Conceição Leal
  • Rui Henrique
  • Guro E. Lind
  • Carmen Jerónimo
  • Ragnhild A. Lothe
  • Manuel R. TeixeiraEmail author
Preclinical Study

Abstract

Several ETS transcription factors are involved in the pathogenesis of human cancers by different mechanisms. As gene copy number gain/amplification is an alternative mechanism of oncogenic activation and 1q gain is the most common copy number change in breast carcinoma, we investigated how that genomic change impacts in the expression of the three 1q ETS family members ETV3, ELK4, and ELF3. We have first evaluated 141 breast carcinomas for genome-wide copy number changes by chromosomal CGH and showed that 1q21 and 1q32 were the two chromosome bands with most frequent genomic copy number gains. Second, we confirmed by FISH with locus-specific BAC clones that cases showing 1q gain/amplification by CGH showed copy number increase of the ETS genes ETV3 (located in 1q21~23), ELF3, and ELK4 (both in 1q32). Third, gene expression levels of the three 1q ETS genes, as well as their potential targets MYC and CRISP3, were evaluated by quantitative real-time PCR. We here show for the first time that the most common genomic copy number gains in breast cancer, 1q21 and 1q32, are associated with overexpression of the ETS transcription factors ETV3 and ELF3 (but not ELK4) at these loci irrespective of molecular subtypes. Among the three 1q ETS genes, ELF3 has a relevant role in breast carcinogenesis and is also the most likely target of the 1q copy number increase. The basal-like molecular subtype presented the worst prognosis regarding disease-specific survival, but no additional prognostic value was found for 1q copy number status or ELF3 expression. In addition, we show that there is a correlation between the expression of the oncogene MYC, irrespectively of copy number gain at its loci in 8q24, and the expression of both the transcriptional repressor ETV3 and the androgen respondent ELK4.

Keywords

Breast cancer 1q copy number gain ETS genes ETV3 ELF3 ELK4 

Notes

Acknowledgments

This study was supported by Fundação para a Ciência e Tecnologia (FCT; PEST-OE/SAL/UI0776/2011) and by Liga Portuguesa Contra o Cancro, Núcleo Regional do Norte. Bárbara Mesquita (SFRH/BD/30097/2006) is a research fellow funded by FCT. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The study was approved by the institutional review board.

Supplementary material

10549_2013_2408_MOESM1_ESM.pdf (160 kb)
Supplementary material 1 (PDF 159 kb)
10549_2013_2408_MOESM2_ESM.pdf (146 kb)
Supplementary material 2 (PDF 145 kb)
10549_2013_2408_MOESM3_ESM.pdf (78 kb)
Supplementary material 3 (PDF 77 kb)
10549_2013_2408_MOESM4_ESM.pdf (118 kb)
Supplementary material 4 (PDF 117 kb)

References

  1. 1.
    Oikawa T, Yamada T (2003) Molecular biology of the Ets family of transcription factors. Gene 303:11–34PubMedCrossRefGoogle Scholar
  2. 2.
    Arvand A, Denny CT (2001) Biology of EWS/ETS fusions in Ewing’s family tumors. Oncogene 20:5747–5754PubMedCrossRefGoogle Scholar
  3. 3.
    Gilliland DG (2001) The diverse role of the ETS family of transcription factors in cancer. Clin Cancer Res 7:451–453PubMedGoogle Scholar
  4. 4.
    Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, Varambally S, Cao X, Tchinda J, Kuefer R, Lee C, Montie JE, Shah RB, Pienta KJ, Rubin MA, Chinnaiyan AM (2005) Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310:644–648PubMedCrossRefGoogle Scholar
  5. 5.
    Paulo P, Barros-Silva JD, Ribeiro FR, Ramalho-Carvalho J, Jeronimo C, Henrique R, Lind GE, Skotheim RI, Lothe RA, Teixeira MR (2012) FLI1 is a novel ETS transcription factor involved in gene fusions in prostate cancer. Genes Chromosomes Cancer 51:240–249PubMedCrossRefGoogle Scholar
  6. 6.
    Feldman RJ, Sementchenko VI, Gayed M, Fraig MM, Watson DK (2003) Pdef expression in human breast cancer is correlated with invasive potential and altered gene expression. Cancer Res 63:4626–4631PubMedGoogle Scholar
  7. 7.
    Bièche I, Tozlu S, Girault I, Onody P, Driouch K, Vidaud M, Lidereau R (2004) Expression of PEA3/E1AF/ETV4, an Ets-related transcription factor, in breast tumors: positive links to MMP2, NRG1 and CGB expression. Carcinogenesis 25:405–411PubMedCrossRefGoogle Scholar
  8. 8.
    Chotteau-Lelievre A, Révillion F, Lhotellier V, Hornez L, Desbiens X, Cabaret V, de Launoit Y, Peyrat JP (2004) Prognostic value of ERM gene expression in human primary breast cancers. Clin Cancer Res 10:7297–7303PubMedCrossRefGoogle Scholar
  9. 9.
    Myers E, Hill ADK, Kelly G, McDemott EW, O`Higgins NJ, Buggy Y, Young LS (2005) Associations and interactions between ETS-1 and ETS-2 and coregulatory proteins, DRC-1, AIB1, and NCoR in breast cancer. Clin Cancer Res 11:2111–2122PubMedCrossRefGoogle Scholar
  10. 10.
    Buggy Y, Maguire TM, McDemott EW, Hill ADK, O`Higgins NJ, Duffy MJ (2006) ETS2 transcription factor in normal and neoplastic human breast tissue. Eur J Cancer 42:485–491PubMedCrossRefGoogle Scholar
  11. 11.
    Furlan A, Vercamer C, Desbiens X, Pourtier A (2008) ETS-1 triggers and orchestrates the malignant phenotype of mammary cancer cells within their matrix environment. J Cell Physiol 215:782–793PubMedCrossRefGoogle Scholar
  12. 12.
    Tognon C, Knezevich SR, Huntsman D, Roskelley CD, Melnyk N, Mathers JA, Becker L, Carneiro F, MacPherson N, Horsman D, Poremba C, Sorensen PH (2002) Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell 2:367–376PubMedCrossRefGoogle Scholar
  13. 13.
    Teixeira MR, Tsarouha H, Kraggerud SM, Pandis N, Dimitriadis E, Andersen JA, Lothe RA, Heim S (2001) Evaluation of breast cancer polyclonality by combined chromosome banding and comparative genomic hybridization analysis. Neoplasia 3:204–214PubMedCrossRefGoogle Scholar
  14. 14.
    Teixeira MR, Ribeiro FR, Torres L, Pandis N, Andersen JA, Lothe RA, Heim S (2004) Assessment of clonal relationships in ipsilateral and bilateral multiple breast carcinomas by comparative genomic hybridisation and hierarchical clustering analysis. Br J Cancer 91:775–782PubMedGoogle Scholar
  15. 15.
    Ribeiro FR, Jeronimo C, Henrique R, Fonseca D, Oliveira J, Lothe RA, Teixeira MR (2006) 8q gain is an independent predictor of poor survival in diagnostic needle biopsies from prostate cancer suspects. Clin Cancer Res 12:3961–3970PubMedCrossRefGoogle Scholar
  16. 16.
    Orsetti B, Nugoli M, Cervera N, Lasorsa L, Chuchana P, Rouge C, Ursule L, Nguyen C, Bibeau F, Rodriguez C, Theillet C (2006) Genetic profiling of chromosome 1 in breast cancer: mapping of regions of gains and losses and identification of candidate genes on 1q. Br J Cancer 95:1439–1447PubMedCrossRefGoogle Scholar
  17. 17.
    Sun C, Dobi A, Mohamed A, Li H, Thangapazham RL, Furusato B, Shaheduzzaman S, Tan SH, Vaidyanathan G, Whitman E, Hawksworth DJ, Chen Y, Nau M, Patel V, Vahey M, Gutkind JS, Sreenath T, Petrovics G, Sesterhenn IA, McLeod DG, Srivastava S (2008) TMPRSS2-ERG fusion, a common genomic alteration in prostate cancer activates C-MYC and abrogates prostate epithelial differentiation. Oncogene 27:5348–5353PubMedCrossRefGoogle Scholar
  18. 18.
    Ribeiro FR, Paulo P, Costa VL, Barros-Silva JD, Ramalho-Carvalho J, Jeronimo C, Henrique R, Lind GE, Skotheim RI, Lothe RA, Teixeira MR (2011) Cysteine-rich secretory protein-3 (CRISP3) is strongly up-regulated in prostate carcinomas with the TMPRSS2-ERG fusion gene. PLoS One 6:e22317PubMedCrossRefGoogle Scholar
  19. 19.
    Kallioniemi A, Kallioniemi OP, Piper J, Tanner M, Stokke T, Chen L, Smith HS, Pinkel D, Gray JW, Waldman FM (1994) Detection and mapping of amplified DNA sequences in breast cancer by comparative genomic hybridization. Proc Natl Acad Sci USA 91:2156–2160PubMedCrossRefGoogle Scholar
  20. 20.
    Ribeiro FR, Diep CB, Jeronimo C, Henrique R, Lopes C, Eknaes M, Lingjaerde OC, Lothe RA, Teixeira MR (2006) Statistical dissection of genetic pathways involved in prostate carcinogenesis. Genes Chromosomes Cancer 45:154–163PubMedCrossRefGoogle Scholar
  21. 21.
    Kirchhoff M, Gerdes T, Rose H, Maahr J, Ottesen AM, Lundsteen C (1998) Detection of chromosomal gains and losses in comparative genomic hybridization analysis based on standard reference intervals. Cytometry 31:163–173PubMedCrossRefGoogle Scholar
  22. 22.
    International Standing Committee on Human Cytogenetic Nomenclature, Shaffer LG, Tommerup N (2005) ISCN 2005: an international system for human cytogenetic nomenclature (2005): recommendations of the International Standing Committee on Human Cytogenetic Nomenclature. Karger, Basel, FarmingtonGoogle Scholar
  23. 23.
    Wolff AC, Hammond ME, Schwartz JN, Hagerty KL, Allred DC, Cote RJ, Dowsett M, Fitzgibbons PL, Hanna WM, Langer A, McShane LM, Paik S, Pegram MD, Perez EA, Press MF, Rhodes A, Sturgeon C, Taube SE, Tubbs R, Vance GH, van de Vijver M, Wheeler TM, Hayes DF (2007) American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol 25:118–145PubMedCrossRefGoogle Scholar
  24. 24.
    Isola J, Chu L, DeVries S, Matsumura K, Chew K, Ljung BM, Waldman FM (1999) Genetic alterations in ERBB2-amplified breast carcinomas. Clin Cancer Res 5:4140–4145PubMedGoogle Scholar
  25. 25.
    Tomlins SA, Mehra R, Rhodes DR, Shah RB, Rubin MA, Bruening E, Makarov V, Chinnaiyan AM (2006) Whole transcriptome amplification for gene expression profiling and development of molecular archives. Neoplasia 8:153–162PubMedCrossRefGoogle Scholar
  26. 26.
    Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108PubMedCrossRefGoogle Scholar
  27. 27.
    Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D (2000) Molecular portraits of human breast tumours. Nature 406:747–752PubMedCrossRefGoogle Scholar
  28. 28.
    Tang P, Skinner KA, Hicks DG (2009) Molecular classification of breast carcinomas by immunohistochemical analysis: are we ready? Diagn Mol Pathol 18:125–132PubMedCrossRefGoogle Scholar
  29. 29.
    Malhotra GK, Zhao X, Band H, Band V (2010) Histological, molecular and functional subtypes of breasts cancers. Cancer Biol Ther 10:955–960PubMedCrossRefGoogle Scholar
  30. 30.
    Oliver JR, Kushwah R, Hu J (2012) Multiple roles of the epithelium-specific ETS transcription factor, ESE-1, in development and disease. Lab Invest 92:320–330PubMedCrossRefGoogle Scholar
  31. 31.
    Neve R, Chang CH, Scott GK, Wong A, Friis RR, Hynes NE, Benz CC (1998) The epithelium-specific ets transcription factor ESX is associated with mammary gland development and involution. FASEB J 12:1541–1550PubMedGoogle Scholar
  32. 32.
    Galang CK, Muller WJ, Foos G, Oshima RG, Hauser CA (2004) Changes in the expression of many Ets family transcription factors and of potential target genes in normal mammary tissue and tumors. J Biol Chem 279:11281–11292PubMedCrossRefGoogle Scholar
  33. 33.
    He J, Pan Y, Hu J, Albarracin C, Wu Y, Dai JL (2007) Profile of Ets gene expression in human breast carcinoma. Cancer Biol Ther 6:76–82PubMedCrossRefGoogle Scholar
  34. 34.
    Chang CH, Scott GK, Kuo WL, Xiong X, Suzdaltseva Y, Park JW, Sayre P, Erny K, Collins C, Gray JW, Benz CC (1997) ESX: a structurally unique Ets overexpressed early during human breast tumorigenesis. Oncogene 14:1617–1622PubMedCrossRefGoogle Scholar
  35. 35.
    Neve RM, Ylstra B, Chang CH, Albertson DG, Benz CC (2002) ErbB2 activation of ESX gene expression. Oncogene 21:3934–3938PubMedCrossRefGoogle Scholar
  36. 36.
    Prescott JD, Koto KS, Singh M, Gutierrez-Hartmann A (2004) The ETS transcription factor ESE-1 transforms MCF-12A human mammary epithelial cells via a novel cytoplasmic mechanism. Mol Cell Biol 24:5548–5564PubMedCrossRefGoogle Scholar
  37. 37.
    Schedin PJ, Eckel-Mahan KL, McDaniel SM, Prescott JD, Brodsky KS, Tentler JJ, Gutierrez-Hartmann A (2004) ESX induces transformation and functional epithelial to mesenchymal transition in MCF-12A mammary epithelial cells. Oncogene 23:1766–1779PubMedCrossRefGoogle Scholar
  38. 38.
    Walker DM, Poczobbut JM, Gonzales MS, Horita H, Gutierrez-Hartmann A (2010) ESE-1 is required to mantain the transformed phenotype of MCF-7 and ZR-75-1 human breast cancer cells. Open J Cancer 3:77–88Google Scholar
  39. 39.
    Feldman RJ, Sementchenko VI, Watson DK (2003) The epithelial-specific Ets factors occupy a unique position in defining epithelial proliferation, differentiation and carcinogenesis. Anticancer Res 23:2125–2131PubMedGoogle Scholar
  40. 40.
    Hester KD, Verhelle D, Escoubet-Lozach L, Luna R, Rose DW, Glass CK (2007) Differential repression of c-myc and cdc2 gene expression by ERF and PE-1/METS. Cell Cycle 6:1594–1604PubMedCrossRefGoogle Scholar
  41. 41.
    Carlson SM, Chouinard CR, Labadorf A, Lam CJ, Schmelzle K, Fraenkel E, White FM (2011) Large-scale discovery of ERK2 substrates identifies ERK-mediated transcriptional regulation by ETV3. Sci Signal 4:rs11PubMedCrossRefGoogle Scholar
  42. 42.
    Solvang HK, Lingjærde OC, Frigessi A, Børresen-Dale AL, Kristensen VN (2011) Linear and non-linear dependencies between copy number aberrations and mRNA expression reveal distinct molecular pathways in breast cancer. BMC Bioinfomatics 12:197–208CrossRefGoogle Scholar
  43. 43.
    Wang RT, Ahn S, Park CC, Khan AH, Lange K, Smith DJ (2011) Effects of genome-wide copy number variation on expression in mammalian cells. BMC Genomics 12:562–576PubMedCrossRefGoogle Scholar
  44. 44.
    Berg M, Agesen TH, Thiis-Evensen E, the INFAC-study group, Merok MA, Teixeira MR, Vatn MH, Nesbakken A, Skotheim RI, Lothe RA (2010) Distinct high resolution genome profiles of early onset and late onset colorectal cancer integrated with gene expression data indentify candidate susceptibility loci. Mol Cancer 9:100–113PubMedCrossRefGoogle Scholar
  45. 45.
    Rickman DS, Pflueger D, Moss B, VanDoren VE, Chen CX, de la Taille A, Kuefer R, Tewari AK, Setlur SR, Demichelis F, Rubin MA (2009) SLC45A3-ELK4 is a novel and frequent erythroblast transformation-specific fusion transcript in prostate cancer. Cancer Res 69:2734–2738PubMedCrossRefGoogle Scholar
  46. 46.
    Maher CA, Kumar-Sinha C, Cao X, Kalyana-Sundaram S, Han B, Jing X, Sam L, Barrette T, Palanisamy N, Chinnaiyan AM (2009) Transcriptome sequencing to detect gene fusions in cancer. Nature 458:97–101PubMedCrossRefGoogle Scholar
  47. 47.
    Asmann YW, Kosari F, Wang K, Cheville JC, Vasmatzis G (2002) Identification of differentially expressed genes in normal and malignant prostate by electronic profiling of expressed sequence tags. Cancer Res 62:3308–3314PubMedGoogle Scholar
  48. 48.
    Ernst T, Hergenhahn M, Kenzelmann M, Cohen CD, Bonrouhi M, Weninger A, Klaren R, Grone EF, Wiesel M, Gudemann C, Kuster J, Schott W, Staehler G, Kretzler M, Hollstein M, Grone HJ (2002) Decrease and gain of gene expression are equally discriminatory markers for prostate carcinoma: a gene expression analysis on total and micro dissected prostate tissue. Am J Pathol 160:2169–2180PubMedCrossRefGoogle Scholar
  49. 49.
    Bjartell AS, Al-Ahmadie H, Serio AM, Eastham JA, Eggener SE, Fine SW, Udby L, Gerald WL, Vickers AJ, Lilja H, Reuter VE, Scardino PT (2007) Association of cysteine-rich secretory protein 3 and beta-microseminoprotein with outcome after radical prostatectomy. Clin Cancer Res 13:4130–4138PubMedCrossRefGoogle Scholar
  50. 50.
    Makkonen H, Jaaskelainen T, Pitkanen-Arsiola T, Rytinki M, Waltering KK, Matto M, Visakorpi T, Palvimo JJ (2008) Identification of ETS-like transcription factor 4 as a novel androgen receptor target in prostate cancer cells. Oncogene 27:4865–4876PubMedCrossRefGoogle Scholar
  51. 51.
    Park S, Koo J, Park HS, Kim JH, Choi SY, Lee JH, Park BW, Lee KS (2010) Expression of androgen receptors in primary breast cancer. Ann Oncol 21:488–492PubMedCrossRefGoogle Scholar
  52. 52.
    Hu R, Dawood S, Holmes MD, Collins LC, Schnitt SJ, Cole K, Marotti JD, Hankinson SE, Colditz GA, Tamimi RM (2011) Androgen receptor expression and breast cancer survival in postmenopausal women. Clin Cancer Res 17:1867–1874PubMedCrossRefGoogle Scholar
  53. 53.
    Collins LC, Cole KS, Marotti JD, Hu R, Schnitt SJ, Tamimi RM (2011) Androgen receptor expression in breast cancer in relation to molecular phenotype: results from the Nurses’ Health Study. Mod Pathol 24:924–931PubMedCrossRefGoogle Scholar
  54. 54.
    Hynes NE, Stoelzle T (2009) Key signalling nodes in mammary gland development and cancer: Myc. Breast Cancer Res 11:210PubMedCrossRefGoogle Scholar
  55. 55.
    Wierstra I, Alves J (2008) The c-myc Promoter: Still MysterY and Challenge. Adv Cancer Res 99:113–333PubMedCrossRefGoogle Scholar
  56. 56.
    Herrera RE, Shaw PE, Nordheim A (1989) Occupation of the c-fos serum response element in vivo by a multi-protein complex is unaltered by growth factor induction. Nature 340:68–70PubMedCrossRefGoogle Scholar
  57. 57.
    Shaw PE, Schroter H, Nordheim A (1989) The ability of a ternary complex to form over the serum response element correlates with serum inducibility of the human c-fos promoter. Cell 56:563–572PubMedCrossRefGoogle Scholar
  58. 58.
    Mo Y, Vaessen B, Johnston K, Marmorstein R (1998) Structures of SAP-1 bound to DNA targets from the E74 and c-fos promoters: insights into DNA sequence discrimination by Ets proteins. Mol Cell 2:201–212PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Bárbara Mesquita
    • 1
    • 4
  • Paula Lopes
    • 2
  • Ana Rodrigues
    • 3
  • Deolinda Pereira
    • 3
  • Mariana Afonso
    • 2
  • Conceição Leal
    • 2
  • Rui Henrique
    • 2
    • 5
    • 6
  • Guro E. Lind
    • 7
    • 8
  • Carmen Jerónimo
    • 1
    • 5
    • 6
  • Ragnhild A. Lothe
    • 7
    • 8
  • Manuel R. Teixeira
    • 1
    • 4
    • 6
    • 8
    Email author
  1. 1.Department of GeneticsPortuguese Oncology InstitutePortoPortugal
  2. 2.Department of PathologyPortuguese Oncology InstitutePortoPortugal
  3. 3.Department of Medical OncologyPortuguese Oncology InstitutePortoPortugal
  4. 4.Cancer Genetics GroupResearch Centre of the Portuguese Oncology InstitutePortoPortugal
  5. 5.Cancer Epigenetics GroupResearch Centre of the Portuguese Oncology InstitutePortoPortugal
  6. 6.Department of Pathology and Molecular ImmunologyInstitute of Biomedical Sciences Abel Salazar (ICBAS), University of PortoPortoPortugal
  7. 7.Department of Cancer PreventionInstitute for Cancer Research, Norwegian Radium Hospital, Oslo University HospitalOsloNorway
  8. 8.Centre for Cancer BiomedicineFaculty of Medicine, University of OsloOsloNorway

Personalised recommendations