Advertisement

Breast Cancer Research and Treatment

, Volume 137, Issue 3, pp 733–744 | Cite as

Ferritin stimulates breast cancer cells through an iron-independent mechanism and is localized within tumor-associated macrophages

  • Ahmed A. Alkhateeb
  • Bing Han
  • James R. Connor
Preclinical Study

Abstract

Tumor-associated macrophages play a critical role in breast tumor progression; however, it is still unclear what effector molecular mechanisms they employ to impact tumorigenesis. Ferritin is the primary intracellular iron storage protein and is also abundant in circulation. In breast cancer patients, ferritin is detected at higher levels in both serum and tumor lysates, and its increase correlates with poor clinical outcome. In this study, we comprehensively examined the distribution of ferritin in normal and malignant breast tissue at different stages in tumor development. Decreased ferritin expression in cancer cells but increased infiltration of ferritin-rich CD68-positive macrophages was observed with increased tumor histological grade. Interestingly, ferritin stained within the stroma surrounding tumors suggesting local release within the breast. In cell culture, macrophages, but not breast cancer cells, were capable of ferritin secretion, and this secretion was further increased in response to pro-inflammatory cytokines. We next examined the possible functional significance of extracellular ferritin in a breast cancer cell culture model. Ferritin stimulated the proliferation of the epithelial breast cancer cell lines MCF7 and T47D. Moreover, this proliferative effect was independent of the iron content of ferritin and did not increase intracellular iron levels in cancer cells indicating a novel iron-independent function for this protein. Together, these findings suggest that the release of ferritin by infiltrating macrophages in breast tumors may represent an inflammatory effector mechanism by which ferritin directly stimulates tumorigenesis.

Keywords

Ferritin Tumor-associated macrophages Iron Cancer-associated inflammation Breast cancer 

Notes

Ethical Standards

The experiments presented in this manuscript comply with the current laws and standards of the USA and have been approved by the institutional review board at Penn State Hershey Medical Center.

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

10549_2012_2405_MOESM1_ESM.tif (2.2 mb)
Supplementary Fig. 1. a The L-ferritin antibody used in immunohistochemistry specifically recognized recombinant L-ferritin (rLFr) but not recombinant H-ferritin (rHFR). The L-subunit-rich human liver ferritin was used as a positive control. The appearance of the 17 kDa band in liver ferritin has been shown to be due to lysosomal cleavage of the L-ferritin protein [24]. Each lane was loaded with 0.25 μg of protein b Western blot analysis showing no phosphorylation of IKKα/β following exposure to 25nM ferritin extracted from the human liver. c Western blot analysis of total protein lysates from breast cancer cell lines shows that both responsive (i.e. MCF7) and unresponsive (i.e. MDA-MB-231) cell lines express Scara5. The expected molecular weight of Scara5 based on amino acid sequence is 53 kDa. (TIFF 2260 kb)

References

  1. 1.
    Harrison PM, Arosio P (1996) The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta 1275(3):161–203PubMedCrossRefGoogle Scholar
  2. 2.
    Boyd D, Vecoli C, Belcher DM, Jain SK, Drysdale JW (1985) Structural and functional relationships of human ferritin H and L chains deduced from cDNA clones. J Biol Chem 260(21):11755–11761PubMedGoogle Scholar
  3. 3.
    Lawson DM, Artymiuk PJ, Yewdall SJ, Smith JM, Livingstone JC, Treffry A, Luzzago A, Levi S, Arosio P, Cesareni G et al (1991) Solving the structure of human H ferritin by genetically engineering intermolecular crystal contacts. Nature 349(6309):541–544. doi: 10.1038/349541a0 PubMedCrossRefGoogle Scholar
  4. 4.
    Lawson DM, Treffry A, Artymiuk PJ, Harrison PM, Yewdall SJ, Luzzago A, Cesareni G, Levi S, Arosio P (1989) Identification of the ferroxidase centre in ferritin. FEBS Lett 254(1–2):207–210PubMedCrossRefGoogle Scholar
  5. 5.
    Levi S, Yewdall SJ, Harrison PM, Santambrogio P, Cozzi A, Rovida E, Albertini A, Arosio P (1992) Evidence of H- and L-chains have co-operative roles in the iron-uptake mechanism of human ferritin. Biochem J 288(Pt 2):591–596PubMedGoogle Scholar
  6. 6.
    Todorich B, Zhang X, Connor JR (2011) H-ferritin is the major source of iron for oligodendrocytes. Glia 59(6):927–935. doi: 10.1002/glia.21164 PubMedCrossRefGoogle Scholar
  7. 7.
    Todorich B, Zhang X, Slagle-Webb B, Seaman WE, Connor JR (2008) Tim-2 is the receptor for H-ferritin on oligodendrocytes. J Neurochem 107(6):1495–1505. doi: 10.1111/j.1471-4159.2008.05678.x PubMedCrossRefGoogle Scholar
  8. 8.
    Coffman LG, Parsonage D, D’Agostino R Jr, Torti FM, Torti SV (2009) Regulatory effects of ferritin on angiogenesis. Proc Natl Acad Sci USA 106(2):570–575. doi: 10.1073/pnas.0812010106 PubMedCrossRefGoogle Scholar
  9. 9.
    Tesfay L, Huhn AJ, Hatcher H, Torti FM, Torti SV (2012) Ferritin blocks inhibitory effects of two-chain high molecular weight kininogen (HKa) on adhesion and survival signaling in endothelial cells. PLoS ONE 7(7):e40030. doi: 10.1371/journal.pone.0040030 PubMedCrossRefGoogle Scholar
  10. 10.
    Alkhateeb A, Leitzel K, Ali SM, Campbell-Baird C, Evans M, Fuchs E, Köstler WJ, Lipton A, Connor J (2012) Elevation in serum inflammatory biomarkers predicts response to trastuzumab-containing therapy. PLoS ONE 7(12):e51379. doi: 10.1371/journal.pone.0051379
  11. 11.
    Jones BM, Worwood M, Jacobs A (1980) Serum ferritin in patients with cancer: determination with antibodies to HeLa cell and spleen ferritin. Clin Chim Acta 106(2):203–214PubMedCrossRefGoogle Scholar
  12. 12.
    Robertson JF, Pearson D, Price MR, Selby C, Pearson J, Blamey RW, Howell A (1991) Prospective assessment of the role of five tumour markers in breast cancer. Cancer Immunol Immunother 33(6):403–410PubMedCrossRefGoogle Scholar
  13. 13.
    Mannello F, Tonti GA, Medda V, Simone P, Darbre PD (2011) Analysis of aluminium content and iron homeostasis in nipple aspirate fluids from healthy women and breast cancer-affected patients. J Appl Toxicol 31(3):262–269. doi: 10.1002/jat.1641 PubMedCrossRefGoogle Scholar
  14. 14.
    Tappin JA, George WD, Bellingham AJ (1979) Effect of surgery on serum ferritin concentration in patients with breast cancer. Br J Cancer 40(4):658–660PubMedCrossRefGoogle Scholar
  15. 15.
    Jacobs A, Jones B, Ricketts C, Bulbrook RD, Wang DY (1976) Serum ferritin concentration in early breast cancer. Br J Cancer 34(3):286–290PubMedCrossRefGoogle Scholar
  16. 16.
    Arosio P, Yokota M, Drysdale JW (1977) Characterization of serum ferritin in iron overload: possible identity to natural apoferritin. Br J Haematol 36(2):199–207PubMedCrossRefGoogle Scholar
  17. 17.
    Weinstein RE, Bond BH, Silberberg BK (1982) Tissue ferritin concentration in carcinoma of the breast. Cancer 50(11):2406–2409PubMedCrossRefGoogle Scholar
  18. 18.
    Weinstein RE, Bond BH, Silberberg BK, Vaughn CB, Subbaiah P, Pieper DR (1989) Tissue ferritin concentration and prognosis in carcinoma of the breast. Breast Cancer Res Treat 14(3):349–353PubMedCrossRefGoogle Scholar
  19. 19.
    Rossiello R, Carriero MV, Giordano GG (1984) Distribution of ferritin, transferrin and lactoferrin in breast carcinoma tissue. J Clin Pathol 37(1):51–55PubMedCrossRefGoogle Scholar
  20. 20.
    Jezequel P, Campion L, Spyratos F, Loussouarn D, Campone M, Guerin-Charbonnel C, Joalland MP, Andre J, Descotes F, Grenot C, Roy P, Carlioz A, Martin PM, Chassevent A, Jourdan ML, Ricolleau G (2012) Validation of tumor-associated macrophage ferritin light chain as a prognostic biomarker in node-negative breast cancer tumors: a multicentric 2004 national PHRC study. Int J Cancer 131(2):426–437. doi: 10.1002/ijc.26397 PubMedCrossRefGoogle Scholar
  21. 21.
    Snyder AM, Neely EB, Levi S, Arosio P, Connor JR (2010) Regional and cellular distribution of mitochondrial ferritin in the mouse brain. J Neurosci Res 88(14):3133–3143. doi: 10.1002/jnr.22462 PubMedCrossRefGoogle Scholar
  22. 22.
    Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4(1):71–78. doi: 10.1038/nrc1256 PubMedCrossRefGoogle Scholar
  23. 23.
    Simson JV, Spicer SS (1972) Ferritin particles in macrophages and in associated mast cells. J Cell Biol 52(3):536–541PubMedCrossRefGoogle Scholar
  24. 24.
    Cohen LA, Gutierrez L, Weiss A, Leichtmann-Bardoogo Y, Zhang DL, Crooks DR, Sougrat R, Morgenstern A, Galy B, Hentze MW, Lazaro FJ, Rouault TA, Meyron-Holtz EG (2010) Serum ferritin is derived primarily from macrophages through a nonclassical secretory pathway. Blood 116(9):1574–1584. doi: 10.1182/blood-2009-11-253815 PubMedCrossRefGoogle Scholar
  25. 25.
    Li JY, Paragas N, Ned RM, Qiu A, Viltard M, Leete T, Drexler IR, Chen X, Sanna-Cherchi S, Mohammed F, Williams D, Lin CS, Schmidt-Ott KM, Andrews NC, Barasch J (2009) Scara5 is a ferritin receptor mediating non-transferrin iron delivery. Dev Cell 16(1):35–46. doi: 10.1016/j.devcel.2008.12.002 PubMedCrossRefGoogle Scholar
  26. 26.
    Breuer W, Epsztejn S, Cabantchik ZI (1995) Iron acquired from transferrin by K562 cells is delivered into a cytoplasmic pool of chelatable iron(II). J Biol Chem 270(41):24209–24215PubMedCrossRefGoogle Scholar
  27. 27.
    Ruddell RG, Hoang-Le D, Barwood JM, Rutherford PS, Piva TJ, Watters DJ, Santambrogio P, Arosio P, Ramm GA (2009) Ferritin functions as a proinflammatory cytokine via iron-independent protein kinase C zeta/nuclear factor kappaB-regulated signaling in rat hepatic stellate cells. Hepatology 49(3):887–900. doi: 10.1002/hep.22716 PubMedCrossRefGoogle Scholar
  28. 28.
    Hogemann-Savellano D, Bos E, Blondet C, Sato F, Abe T, Josephson L, Weissleder R, Gaudet J, Sgroi D, Peters PJ, Basilion JP (2003) The transferrin receptor: a potential molecular imaging marker for human cancer. Neoplasia 5(6):495–506PubMedGoogle Scholar
  29. 29.
    Pinnix ZK, Miller LD, Wang W, D’Agostino R Jr, Kute T, Willingham MC, Hatcher H, Tesfay L, Sui G, Di X, Torti SV, Torti FM (2010) Ferroportin and iron regulation in breast cancer progression and prognosis. Sci Transl Med 2(43):43ra56. doi: 10.1126/scisignal.3001127
  30. 30.
    Lin EY, Li JF, Gnatovskiy L, Deng Y, Zhu L, Grzesik DA, Qian H, Xue XN, Pollard JW (2006) Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res 66(23):11238–11246. doi: 10.1158/0008-5472.CAN-06-1278 PubMedCrossRefGoogle Scholar
  31. 31.
    DeNardo DG, Barreto JB, Andreu P, Vasquez L, Tawfik D, Kolhatkar N, Coussens LM (2009) CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell 16(2):91–102. doi: 10.1016/j.ccr.2009.06.018 PubMedCrossRefGoogle Scholar
  32. 32.
    Ruffell B, Au A, Rugo HS, Esserman LJ, Hwang ES, Coussens LM (2012) Leukocyte composition of human breast cancer. Proc Natl Acad Sci USA 109(8):2796–2801. doi: 10.1073/pnas.1104303108 PubMedCrossRefGoogle Scholar
  33. 33.
    Chen Q, Zhang XH, Massague J (2011) Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs. Cancer Cell 20(4):538–549. doi: 10.1016/j.ccr.2011.08.025 PubMedCrossRefGoogle Scholar
  34. 34.
    DeNardo DG, Brennan DJ, Rexhepaj E, Ruffell B, Shiao SL, Madden SF, Gallagher WM, Wadhwani N, Keil SD, Junaid SA, Rugo HS, Hwang ES, Jirstrom K, West BL, Coussens LM (2011) Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov 1(1):54–67. doi: 10.1158/2159-8274.CD-10-0028 PubMedCrossRefGoogle Scholar
  35. 35.
    Shree T, Olson OC, Elie BT, Kester JC, Garfall AL, Simpson K, Bell-McGuinn KM, Zabor EC, Brogi E, Joyce JA (2011) Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer. Genes Dev 25(23):2465–2479. doi: 10.1101/gad.180331.111 PubMedCrossRefGoogle Scholar
  36. 36.
    Partin AW, Criley SR, Steiner MS, Hsieh K, Simons JW, Lumadue J, Carter HB, Marshall FF (1995) Serum ferritin as a clinical marker for renal cell carcinoma: influence of tumor volume. Urology 45(2):211–217PubMedCrossRefGoogle Scholar
  37. 37.
    Sato Y, Honda Y, Asoh T, Oizumi K, Ohshima Y, Honda E (1998) Cerebrospinal fluid ferritin in glioblastoma: evidence for tumor synthesis. J Neurooncol 40(1):47–50PubMedCrossRefGoogle Scholar
  38. 38.
    Tran TN, Eubanks SK, Schaffer KJ, Zhou CY, Linder MC (1997) Secretion of ferritin by rat hepatoma cells and its regulation by inflammatory cytokines and iron. Blood 90(12):4979–4986PubMedGoogle Scholar
  39. 39.
    Ghosh S, Hevi S, Chuck SL (2004) Regulated secretion of glycosylated human ferritin from hepatocytes. Blood 103(6):2369–2376. doi: 10.1182/blood-2003-09-3050 PubMedCrossRefGoogle Scholar
  40. 40.
    Ferring-Appel D, Hentze MW, Galy B (2009) Cell-autonomous and systemic context-dependent functions of iron regulatory protein 2 in mammalian iron metabolism. Blood 113(3):679–687. doi: 10.1182/blood-2008-05-155093 PubMedCrossRefGoogle Scholar
  41. 41.
    Singh M, Lu J, Briggs SP, McGinley JN, Haegele AD, Thompson HJ (1994) Effect of excess dietary iron on the promotion stage of 1-methyl-1-nitrosourea-induced mammary carcinogenesis: pathogenetic characteristics and distribution of iron. Carcinogenesis 15(8):1567–1570PubMedCrossRefGoogle Scholar
  42. 42.
    Diwan BA, Kasprzak KS, Anderson LM (1997) Promotion of dimethylbenz[a]anthracene-initiated mammary carcinogenesis by iron in female Sprague–Dawley rats. Carcinogenesis 18(9):1757–1762PubMedCrossRefGoogle Scholar
  43. 43.
    Broxmeyer HE, Williams DE, Geissler K, Hangoc G, Cooper S, Bicknell DC, Levi S, Arosio P (1989) Suppressive effects in vivo of purified recombinant human H-subunit (acidic) ferritin on murine myelopoiesis. Blood 73(1):74–79PubMedGoogle Scholar
  44. 44.
    Cozzi A, Corsi B, Levi S, Santambrogio P, Biasiotto G, Arosio P (2004) Analysis of the biologic functions of H- and L-ferritins in HeLa cells by transfection with siRNAs and cDNAs: evidence for a proliferative role of L-ferritin. Blood 103(6):2377–2383. doi: 10.1182/blood-2003-06-1842 PubMedCrossRefGoogle Scholar
  45. 45.
    Johnson TW, Anderson KE, Lazovich D, Folsom AR (2002) Association of aspirin and nonsteroidal anti-inflammatory drug use with breast cancer. Cancer Epidemiol Biomark Prev 11(12):1586–1591Google Scholar
  46. 46.
    Cotterchio M, Kreiger N, Sloan M, Steingart A (2001) Nonsteroidal anti-inflammatory drug use and breast cancer risk. Cancer Epidemiol Biomark Prev 10(11):1213–1217Google Scholar
  47. 47.
    Pham CG, Bubici C, Zazzeroni F, Papa S, Jones J, Alvarez K, Jayawardena S, De Smaele E, Cong R, Beaumont C, Torti FM, Torti SV, Franzoso G (2004) Ferritin heavy chain upregulation by NF-kappaB inhibits TNFalpha-induced apoptosis by suppressing reactive oxygen species. Cell 119(4):529–542. doi: 10.1016/j.cell.2004.10.017 PubMedCrossRefGoogle Scholar
  48. 48.
    Fleming DJ, Jacques PF, Massaro JM, D’Agostino RB Sr, Wilson PW, Wood RJ (2001) Aspirin intake and the use of serum ferritin as a measure of iron status. Am J Clin Nutr 74(2):219–226PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ahmed A. Alkhateeb
    • 1
  • Bing Han
    • 2
  • James R. Connor
    • 1
  1. 1.Department of NeurosurgeryThe Pennsylvania State University Hershey Medical CenterHersheyUSA
  2. 2.Department of PathologyThe Pennsylvania State University Hershey Medical CenterHersheyUSA

Personalised recommendations