Breast Cancer Research and Treatment

, Volume 136, Issue 3, pp 911–918 | Cite as

The clinical consequences of hemizygosity across 2 MB of 10q23 are restricted to Cowden syndrome

  • Cheryl M. Lewis
  • Dawei Bu
  • Venetia Sarode
  • Linda Robinson
  • Kathleen S. Wilson
  • Rebecca K. Viscusi
  • Charis Eng
  • David M. Euhus
Brief Report

Abstract

Cowden syndrome is caused by germline mutations in PTEN and clinically characterized by hamartomas, macrocephaly, classic dermatologic stigmata, and an estimated 85 % lifetime risk of female breast cancer. A young woman with macrocephaly, tricholemmomas, AV malformations, and mammary papillomatosis was found to be hemizygous for PTEN in her germline DNA. Using MLPA, comparative genomic hybridization, and DNA sequencing, we identified a 2-Mb deletion in chromosome 10 spanning 344-kb centromeric and 1.7-Mb telomeric of PTEN. Her father who has a clinical history including macrocephaly, Hashimoto’s thyroiditis, colonic polyposis, acral keratoses, and goiter was also found to have the same deletion. In benign breast tissue from the hemizygous female, PTEN protein expression was significantly reduced in luminal and stromal cells but present in the myoepithelium. Compared with a typical papilloma of the breast which had intense cytoplasmic PTEN staining, the majority of the patient’s papilloma had significantly decreased PTEN expression while some cells had mislocalized perinuclear PTEN expression. In addition to PTEN, 22 other protein-coding genes were deleted including two predicted haploinsufficient genes and five additional genes that have previously been associated with hereditary predispositions to certain diseases. However, because all significant clinical features of the proband and her father are common to patients with genetic alterations in PTEN, the other 22 hemizygous protein-coding genes appear to be haplosufficient.

Keywords

Molecular genetics Cowden syndrome Breast cancer Haploinsufficiency Hemizygosity 

References

  1. 1.
    Liaw D, Marsh DJ, Li J, Dahia PLM, Wang SI, Zheng Z, Bose S, Call KM, Tsou HC, Peacocke M, Eng C, Parsons R (1997) Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat Genet 16:64–67PubMedCrossRefGoogle Scholar
  2. 2.
    Nelen MR, van Staveren WCG, Peeters EAJ, Ben Hassel M, Gorlin RJ, Hamm H, Lindboe CF, Fryns J-P, Sijmons RH, Woods DG, Mariman ECM, Padberg GW, Kremer H (1997) Germline mutations in the PTEN/MMAC1 gene in patients with Cowden disease. Hum Mol Genet 6(8):1383–1387. doi:10.1093/hmg/6.8.1383 PubMedCrossRefGoogle Scholar
  3. 3.
    Chibon F, Primois C, Bressieux J-M, Lacombe D, Lok C, Mauriac L, Taieb A, Longy M (2008) Contribution of PTEN large rearrangements in Cowden disease: a multiplex amplifiable probe hybridisation (MAPH) screening approach. J Med Genet 45(10):657–665. doi:10.1136/jmg.2008.058131 PubMedCrossRefGoogle Scholar
  4. 4.
    Israeli S, Khamaysi Z, Fuchs-Telem D, Nousbeck J, Bergman R, Sarig O, Sprecher E (2011) A mutation in LIPN, encoding epidermal lipase N, causes a late-onset form of autosomal-recessive congenital ichthyosis. Am J Hum Genet 88(4):482–487. doi:10.1016/j.ajhg.2011.02.011 PubMedCrossRefGoogle Scholar
  5. 5.
    Gimm O, Chi H, Dahia PLM, Perren A, Hinze R, Komminoth P, Dralle H, Reynolds PR, Eng C (2001) Somatic mutation and germline variants of MINPP1, a phosphatase gene located in proximity to PTEN on 10q23.3, in follicular thyroid carcinomas. J Clin Endocrinol Metab 86(4):1801–1805. doi:10.1210/jc.86.4.1801 PubMedCrossRefGoogle Scholar
  6. 6.
    Ahmad M, Ul Haque MF, Ahmad W, Abbas H, Haque S, Krakow D, Rimoin DL, Lachman RS, Cohn DH (1998) Distinct, autosomal recessive form of spondyloepimetaphyseal dysplasia segregating in an inbred Pakistani kindred. Am J Med Genet 78(5):468–473. doi:10.1002/(sici)1096-8628(19980806)78:5<468:aid-ajmg13>3.0.co;2-d PubMedCrossRefGoogle Scholar
  7. 7.
    Guo D-C, Pannu H, Tran-Fadulu V, Papke CL, Yu RK, Avidan N, Bourgeois S, Estrera AL, Safi HJ, Sparks E, Amor D, Ades L, McConnell V, Willoughby CE, Abuelo D, Willing M, Lewis RA, Kim DH, Scherer S, Tung PP, Ahn C, Buja LM, Raman CS, Shete SS, Milewicz DM (2007) Mutations in smooth muscle [alpha]-actin (ACTA2) lead to thoracic aortic aneurysms and dissections. Nat Genet 39(12): 1488–1493. doi:http://www.nature.com/ng/journal/v39/n12/suppinfo/ng.2007.6_S1.html Google Scholar
  8. 8.
    Guo D-C, Papke CL, Tran-Fadulu V, Regalado ES, Avidan N, Johnson RJ, Kim DH, Pannu H, Willing MC, Sparks E, Pyeritz RE, Singh MN, Dalman RL, Grotta JC, Marian AJ, Boerwinkle EA, Frazier LQ, LeMaire SA, Coselli JS, Estrera AL, Safi HJ, Veeraraghavan S, Muzny DM, Wheeler DA, Willerson JT, Yu RK, Shete SS, Scherer SE, Raman CS, Buja LM, Milewicz DM (2009) Mutations in smooth muscle alpha-actin (ACTA2) cause coronary artery disease, stroke, and moyamoya disease, along with thoracic aortic disease. Am J Hum Genet 84(5):617–627. doi:10.1016/j.ajhg.2009.04.007 PubMedCrossRefGoogle Scholar
  9. 9.
    Anderson RA, Byrum RS, Coates PM, Sando GN (1994) Mutations at the lysosomal acid cholesteryl ester hydrolase gene locus in Wolman disease. Proc Natl Acad Sci 91(7):2718–2722PubMedCrossRefGoogle Scholar
  10. 10.
    Pagani F, Garcia R, Pariyarath R, Stuani C, Gridelli B, Paone G, BaraMe FE (1996) Expression of lysosomal acid lipase mutants detected in three patients with cholesteryl ester storage disease. Hum Mol Genet 5(10):1611–1617. doi:10.1093/hmg/5.10.1611 PubMedCrossRefGoogle Scholar
  11. 11.
    Kloeckener-Gruissem B, Vandekerckhove K, Nürnberg G, Neidhardt J, Zeitz C, Nürnberg P, Schipper I, Berger W (2008) Mutation of solute carrier SLC16A12 associates with a syndrome combining juvenile cataract with microcornea and renal glucosuria. Am J Hum Genet 82(3):772–779. doi:10.1016/j.ajhg.2007.12.013 PubMedCrossRefGoogle Scholar
  12. 12.
    Tan M-H, Mester J, Peterson C, Yang Y, Chen J-L, Rybicki LA, Milas K, Pederson H, Remzi B, Orloff MS, Eng C (2011) A clinical scoring system for selection of patients for PTEN mutation testing is proposed on the basis of a prospective study of 3042 probands. Am J Hum Genet 88(1):42–56. doi:10.1016/j.ajhg.2010.11.013 PubMedCrossRefGoogle Scholar
  13. 13.
    Tan M-H, Mester JL, Ngeow J, Rybicki LA, Orloff MS, Eng C (2012) Lifetime cancer risks in individuals with germline PTEN mutations. Clin Cancer Res 18(2):400–407. doi:10.1158/1078-0432.ccr-11-2283 PubMedCrossRefGoogle Scholar
  14. 14.
    Orloff MS, Eng C (2008) Genetic and phenotypic heterogeneity in the PTEN hamartoma tumour syndrome. Oncogene 27(41):5387–5397PubMedCrossRefGoogle Scholar
  15. 15.
    Farooq A, Walker LJ, Bowling J, Audisio RA (2010) Cowden syndrome. Cancer Treat Rev 36(8):577–583PubMedCrossRefGoogle Scholar
  16. 16.
    Alimonti A, Carracedo A, Clohessy JG, Trotman LC, Nardella C, Egia A, Salmena L, Sampieri K, Haveman WJ, Brogi E, Richardson AL, Zhang J, Pandolfi PP (2010) Subtle variations in Pten dose determine cancer susceptibility. Nat Genet 42(5): 454–458. doi:http://www.nature.com/ng/journal/v42/n5/suppinfo/ng.556_S1.html Google Scholar
  17. 17.
    Schrager CA, Schneider D, Gruener AC, Tsou HC, Peacocke M (1998) Clinical and pathological features of breast disease in Cowden’s syndrome: an underrecognized syndrome with an increased risk of breast cancer. Hum Pathol 29(1):47–53PubMedCrossRefGoogle Scholar
  18. 18.
    Dahia PM, Gimm O, Chi H, Marsh DJ, Reynolds PR, Eng C (2000) Absence of germline mutations in MINPP1, a phosphatase encoding gene centromeric of PTEN, in patients with Cowden and Bannayan-Riley- Ruvalcaba syndrome without germlinePTEN mutations. J Med Genet 37(9):715–717. doi:10.1136/jmg.37.9.715 PubMedCrossRefGoogle Scholar
  19. 19.
    Huang N, Lee I, Marcotte EM, Hurles ME (2010) Characterising and predicting haploinsufficiency in the human genome. PLoS Genet 6(10):e1001154. doi:10.1371/journal.pgen.1001154 PubMedCrossRefGoogle Scholar
  20. 20.
    Delnatte C, Sanlaville D, Mougenot J-F, Vermeesch J-R, Houdayer C, Blois M-Cd, Genevieve D, Goulet O, Fryns J-P, Jaubert F, Vekemans M, Lyonnet S, Romana S, Eng C, Stoppa-Lyonnet D (2006) Contiguous gene deletion within chromosome arm 10q is associated with juvenile polyposis of infancy, reflecting cooperation between the BMPR1A and PTEN tumor-suppressor genes. Am J Hum Genet 78(6):1066–1074. doi:10.1086/504301 PubMedCrossRefGoogle Scholar
  21. 21.
    Sweet K, Willis J, Zhou X-P, Gallione C, Sawada T, Alhopuro P, Khoo SK, Patocs A, Martin C, Bridgeman S, Heinz J, Pilarski R, Lehtonen R, Prior TW, Frebourg T, Teh BT, Marchuk DA, Aaltonen LA, Eng C (2005) Molecular classification of patients with unexplained hamartomatous and hyperplastic polyposis. JAMA, J Am Med Assoc 294(19):2465–2473. doi:10.1001/jama.294.19.2465 CrossRefGoogle Scholar
  22. 22.
    Zhou X-P, Waite KA, Pilarski R, Hampel H, Fernandez MJ, Bos C, Dasouki M, Feldman GL, Greenberg LA, Ivanovich J, Matloff E, Patterson A, Pierpont ME, Russo D, Nassif NT, Eng C (2003) Germline PTEN promoter mutations and deletions in Cowden/Bannayan-Riley-Ruvalcaba syndrome result in aberrant PTEN protein and dysregulation of the phosphoinositol-3-kinase/Akt pathway. Am J Hum Genet 73(2):404–411. doi:10.1086/377109 PubMedCrossRefGoogle Scholar
  23. 23.
    Tan W-H, Baris HN, Burrows PE, Robson CD, Alomari AI, Mulliken JB, Fishman SJ, Irons MB (2007) The spectrum of vascular anomalies in patients with PTEN mutations: implications for diagnosis and management. J Med Genet 44(9):594–602. doi:10.1136/jmg.2007.048934 PubMedCrossRefGoogle Scholar
  24. 24.
    Haaksma CJ, Schwartz RJ, Tomasek JJ (2011) Myoepithelial cell contraction and milk ejection are impaired in mammary glands of mice lacking smooth muscle alpha-actin. Biol Reprod 85(1):13–21. doi:10.1095/biolreprod.110.090639 PubMedCrossRefGoogle Scholar
  25. 25.
    Xu J, Li G, Wang P, Velazquez H, Yao X, Li Y, Wu Y, Peixoto A, Crowley S, Desir GV (2005) Renalase is a novel, soluble monoamine oxidase that regulates cardiac function and blood pressure. J Clin Investig 115(5):1275–1280PubMedGoogle Scholar
  26. 26.
    Zhao Q, Fan Z, He J, Chen S, Li H, Zhang P, Wang L, Hu D, Huang J, Qiang B, Gu D (2007) Renalase gene is a novel susceptibility gene for essential hypertension: a two-stage association study in northern Han Chinese population. J Mol Med 85(8):877–885. doi:10.1007/s00109-006-0151-4 PubMedCrossRefGoogle Scholar
  27. 27.
    Farzaneh-Far R, Desir GV, Na B, Schiller NB, Whooley MA (2010) A functional polymorphism in renalase (Glu37Asp) is associated with cardiac hypertrophy, dysfunction, and ischemia: data from the heart and soul study. PLoS ONE 5(10):e13496. doi:10.1371/journal.pone.0013496 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Cheryl M. Lewis
    • 1
    • 5
  • Dawei Bu
    • 1
  • Venetia Sarode
    • 2
    • 5
  • Linda Robinson
    • 3
    • 5
  • Kathleen S. Wilson
    • 4
    • 6
  • Rebecca K. Viscusi
    • 1
  • Charis Eng
    • 7
  • David M. Euhus
    • 1
    • 3
    • 5
  1. 1.Department of SurgeryUniversity of Texas Southwestern Medical CenterDallasUSA
  2. 2.Department of PathologyUT Southwestern Medical CenterDallasUSA
  3. 3.Clinical Cancer GeneticsUT Southwestern Medical CenterDallasUSA
  4. 4.Department of PathologyUT Southwestern Medical CenterDallasUSA
  5. 5.Simmons Comprehensive Cancer CenterUT Southwestern Medical CenterDallasUSA
  6. 6.McDermott Center for Human Growth and DevelopmentUT Southwestern Medical CenterDallasUSA
  7. 7.Genomic Medicine InstituteCleveland ClinicClevelandUSA

Personalised recommendations