Advertisement

Breast Cancer Research and Treatment

, Volume 137, Issue 1, pp 69–79 | Cite as

Prospective dual role of mesenchymal stem cells in breast tumor microenvironment

  • Christiane Senst
  • Timo Nazari-Shafti
  • Stefan Kruger
  • Kirstin Höner Zu Bentrup
  • Charles L. Dupin
  • Abigail E. Chaffin
  • Sudesh K. Srivastav
  • Philipp M. Wörner
  • Asim B. Abdel-Mageed
  • Eckhard U. Alt
  • Reza IzadpanahEmail author
Preclinical Study

Abstract

Breast cancer tissue is a heterogeneous cellular milieu comprising cancer and host cells. The interaction between breast malignant and non-malignant cells takes place in breast tumor microenvironment (TM), and has a crucial role in breast cancer progression. In addition to cellular component of TM, it mainly consists of cytokines released by tumor cells. The tumor-tropic capacity of mesenchymal stem cells (MSCs) and their interaction with breast TM is an active area of investigation. In the present communication, the interplay between the breast resident adipose tissue-derived MSCs (B-ASCs) and breast TM was studied. It was found that a distinct subset of B-ASCs display a strong affinity for conditioned media (CM) from two breast cancer cell lines, MDA-MB 231 (MDA-CM) and MCF-7 (MCF-CM). The expressions of several cytokines including angiogenin, GM-CSF, IL-6, GRO-α and IL-8 in MDA-CM and MCF-CM have been identified. Upon functional analysis a crucial role for GRO-α and IL-8 in B-ASCs migration was detected. The B-ASC migration was found to be via negative regulation of RECK and enhanced expression of MMPs. Furthermore, transcriptome analysis showed that migratory subpopulation express both pro- and anti-tumorigenic genes and microRNAs (miRNA). Importantly, we observed that the migratory cells exhibit similar gene and miRNA attributes as those seen in B-ASCs of breast cancer patients. These findings are novel and suggest that in breast cancer, B-ASCs migrate to the proximity of tumor foci. Characterization of the molecular mechanisms involved in the interplay between B-ASCs and breast TM will help in understanding the probable role of B-ASCs in breast cancer development, and could pave way for anticancer therapies.

Keywords

Mesenchymal stem cells Adipose tissue derived mesenchymal stem cells Breast cancer Tumor microenvironment microRNA 

Notes

Acknowledgments

We would also like to give special thanks and express our gratitude to Drs. Edward Newsome, Douglas Slakey, and Subramanyam Murthy for their valuable contributions to this study. In addition, we would also like to acknowledge Tulane’s Cancer Center for providing us with the flow cytometry facilities. This work was supported by funds from the Alliance of Cardiovascular Researchers (Grant: M1-545856A1).

Conflict of interest

None.

Supplementary material

10549_2012_2321_MOESM1_ESM.doc (120 kb)
Supplementary material 1 (DOC 120 kb)
10549_2012_2321_MOESM2_ESM.pdf (128 kb)
Fig. S1 B-ASC and A-ASC characteristics. A) Differentiation potential of A-ASCs and B-ASCs: adipogenic potentials of A-ASC and B-ASCs was shown by staining differentiated cells with Oil Red O following 14 days incubation in adipogenic differentiation media (I&II). Osteogenic potentials of A-ASCs and B-ASCs were examined by incubation of cells in osteogenic media for 12 days, and then cells were stained with Alizarin red (III&IV). Both ASC types promoted the formation of chondrocytes when they were incubated in chondrogenic media for 21 days. Spheres then embedded in paraffin and stained with toluidin blue (slices of 10 μm) (V&VI). B. Box plots of invasion assay in 6 h and 24 h in MDA-CM, B. Invasion in MCF-CM. Left box plot non-migrated subpopulation, right box plots migrated subpopulation in each figure. Top row shows the fraction of cells migrated within 6 h and bottom row display the migration following 24 h of incubation cells in contact with condition media (P < 0.05) (PDF 129 kb)
10549_2012_2321_MOESM3_ESM.pdf (587 kb)
Fig. S2 Histology of tumor and adipose tissues collected from AS and IDC breast cancers. Hematoxylin and Eosin staining of tumor and adipose tissues. The adipose tissues were harvested from 5 cm distance of the tumor tissues (PDF 588 kb)
10549_2012_2321_MOESM4_ESM.pdf (73 kb)
Fig. S3 Flow cytometry analysis: B-ASCs, ASCIDC and ASCAS were profiled for the cell surface markers. Gray Filled = Isotype, Gray Line = B-ASCs, Black Line = Migrated Subpopulation, Black Dots = Non-Migrated Subpopulations (PDF 73 kb)

References

  1. 1.
    de Visser KE, Eichten A, Coussens LM (2006) Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 6(1):24–37. doi: 10.1038/nrc1782 PubMedCrossRefGoogle Scholar
  2. 2.
    Wels J, Kaplan RN, Rafii S, Lyden D (2008) Migratory neighbors and distant invaders: tumor-associated niche cells. Genes Dev 22(5):559–574. doi: 10.1101/gad.1636908 PubMedCrossRefGoogle Scholar
  3. 3.
    Izadpanah R, Trygg C, Patel B, Kriedt C, Dufour J, Gimble JM, Bunnell BA (2006) Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. J Cell Biochem 99(5):1285–1297. doi: 10.1002/jcb.20904 PubMedCrossRefGoogle Scholar
  4. 4.
    Muller FJ, Snyder EY, Loring JF (2006) Gene therapy: can neural stem cells deliver? Nat Rev Neurosci 7(1):75–84. doi: 10.1038/nrn1829 PubMedCrossRefGoogle Scholar
  5. 5.
    Muehlberg FL, Song YH, Krohn A, Pinilla SP, Droll LH, Leng X, Seidensticker M, Ricke J, Altman AM, Devarajan E, Liu W, Arlinghaus RB, Alt EU (2009) Tissue-resident stem cells promote breast cancer growth and metastasis. Carcinogenesis 30(4):589–597. doi: 10.1093/carcin/bgp036 PubMedCrossRefGoogle Scholar
  6. 6.
    Menon LG, Picinich S, Koneru R, Gao H, Lin SY, Koneru M, Mayer-Kuckuk P, Glod J, Banerjee D (2007) Differential gene expression associated with migration of mesenchymal stem cells to conditioned medium from tumor cells or bone marrow cells. Stem Cells 25(2):520–528. doi: 10.1634/stemcells.2006-0257 PubMedCrossRefGoogle Scholar
  7. 7.
    Belmadani A, Tran PB, Ren D, Miller RJ (2006) Chemokines regulate the migration of neural progenitors to sites of neuroinflammation. J Neurosci 26(12):3182–3191. doi: 10.1523/JNEUROSCI.0156-06.2006 PubMedCrossRefGoogle Scholar
  8. 8.
    Klopp AH, Lacerda L, Gupta A, Debeb BG, Solley T, Li L, Spaeth E, Xu W, Zhang X, Lewis MT, Reuben JM, Krishnamurthy S, Ferrari M, Gaspar R, Buchholz TA, Cristofanilli M, Marini F, Andreeff M, Woodward WA (2010) Mesenchymal stem cells promote mammosphere formation and decrease E-cadherin in normal and malignant breast cells. PLoS One 5(8):e12180. doi: 10.1371/journal.pone.0012180 PubMedCrossRefGoogle Scholar
  9. 9.
    Liu S, Ginestier C, Ou SJ, Clouthier SG, Patel SH, Monville F, Korkaya H, Heath A, Dutcher J, Kleer CG, Jung Y, Dontu G, Taichman R, Wicha MS (2011) Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res 71(2):614–624. doi: 10.1158/0008-5472.CAN-10-0538 PubMedCrossRefGoogle Scholar
  10. 10.
    Razmkhah M, Jaberipour M, Erfani N, Habibagahi M, Talei AR, Ghaderi A (2011) Adipose derived stem cells (ASCs) isolated from breast cancer tissue express IL-4, IL-10 and TGF-beta1 and upregulate expression of regulatory molecules on T cells: do they protect breast cancer cells from the immune response? Cell Immunol 266(2):116–122. doi: 10.1016/j.cellimm.2010.09.005 PubMedCrossRefGoogle Scholar
  11. 11.
    Furuta S, Jeng YM, Zhou L, Huang L, Kuhn I, Bissell MJ, Lee WH (2011) IL-25 causes apoptosis of IL-25R-expressing breast cancer cells without toxicity to nonmalignant cells. Sci Transl Med 3(78):78ra31. doi: 10.1126/scitranslmed.3001374 PubMedCrossRefGoogle Scholar
  12. 12.
    Martin FT, Dwyer RM, Kelly J, Khan S, Murphy JM, Curran C, Miller N, Hennessy E, Dockery P, Barry FP, O’Brien T, Kerin MJ (2010) Potential role of mesenchymal stem cells (MSCs) in the breast tumour microenvironment: stimulation of epithelial to mesenchymal transition (EMT). Breast Cancer Res Treat 124(2):317–326. doi: 10.1007/s10549-010-0734-1 PubMedCrossRefGoogle Scholar
  13. 13.
    Madeleine MM, Johnson LG, Malkki M, Resler AJ, Petersdorf EW, McKnight B, Malone KE (2011) Genetic variation in proinflammatory cytokines IL6, IL6R, TNF-region, and TNFRSF1A and risk of breast cancer. Breast Cancer Res Treat. doi: 10.1007/s10549-011-1520-4 PubMedGoogle Scholar
  14. 14.
    Gehmert S, Prantl L, Vykoukal J, Alt E, Song YH (2010) Breast cancer cells attract the migration of adipose tissue-derived stem cells via the PDGF-BB/PDGFR-beta signaling pathway. Biochem Biophys Res Commun 398(3):601–605. doi: 10.1016/j.bbrc.2010.06.132 PubMedCrossRefGoogle Scholar
  15. 15.
    Erlandsson A, Larsson J, Forsberg-Nilsson K (2004) Stem cell factor is a chemoattractant and a survival factor for CNS stem cells. Exp Cell Res 301(2):201–210. doi: 10.1016/j.yexcr.2004.08.009 PubMedCrossRefGoogle Scholar
  16. 16.
    Kendall SE, Najbauer J, Johnston HF, Metz MZ, Li S, Bowers M, Garcia E, Kim SU, Barish ME, Aboody KS, Glackin CA (2008) Neural stem cell targeting of glioma is dependent on phosphoinositide 3-kinase signaling. Stem Cells 26(6):1575–1586. doi: 10.1634/stemcells.2007-0887 PubMedCrossRefGoogle Scholar
  17. 17.
    Schmidt NO, Przylecki W, Yang W, Ziu M, Teng Y, Kim SU, Black PM, Aboody KS, Carroll RS (2005) Brain tumor tropism of transplanted human neural stem cells is induced by vascular endothelial growth factor. Neoplasia 7(6):623–629PubMedCrossRefGoogle Scholar
  18. 18.
    Widera D, Holtkamp W, Entschladen F, Niggemann B, Zanker K, Kaltschmidt B, Kaltschmidt C (2004) MCP-1 induces migration of adult neural stem cells. Eur J Cell Biol 83(8):381–387PubMedCrossRefGoogle Scholar
  19. 19.
    Palumbo R, Galvez BG, Pusterla T, De Marchis F, Cossu G, Marcu KB, Bianchi ME (2007) Cells migrating to sites of tissue damage in response to the danger signal HMGB1 require NF-kappaB activation. J Cell Biol 179(1):33–40. doi: 10.1083/jcb.200704015 PubMedCrossRefGoogle Scholar
  20. 20.
    Izadpanah R, Joswig T, Tsien F, Dufour J, Kirijan JC, Bunnell BA (2005) Characterization of multipotent mesenchymal stem cells from the bone marrow of rhesus macaques. Stem Cells Dev 14(4):440–451. doi: 10.1089/scd.2005.14.440 PubMedCrossRefGoogle Scholar
  21. 21.
    Freisinger E, Cramer C, Xia X, Murthy SN, Slakey DP, Chiu E, Newsome ER, Alt EU, Izadpanah R (2010) Characterization of hematopoietic potential of mesenchymal stem cells. J Cell Physiol. doi: 10.1002/jcp.22299 PubMedGoogle Scholar
  22. 22.
    Molloy AP, Martin FT, Dwyer RM, Griffin TP, Murphy M, Barry FP, O’Brien T, Kerin MJ (2009) Mesenchymal stem cell secretion of chemokines during differentiation into osteoblasts, and their potential role in mediating interactions with breast cancer cells. Int J Cancer 124(2):326–332. doi: 10.1002/ijc.23939 PubMedCrossRefGoogle Scholar
  23. 23.
    Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, Richardson AL, Polyak K, Tubo R, Weinberg RA (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449(7162):557–563. doi: 10.1038/nature06188 PubMedCrossRefGoogle Scholar
  24. 24.
    Bhowmick NA, Neilson EG, Moses HL (2004) Stromal fibroblasts in cancer initiation and progression. Nature 432(7015):332–337. doi: 10.1038/nature03096 PubMedCrossRefGoogle Scholar
  25. 25.
    Zhang Y, Cheng S, Zhang G, Ma W, Liu Y, Zhao R, Zhang Q, Pang D (2012) Low expression of RECK indicates a shorter survival for patients with invasive breast cancer. Cancer Sci. doi: 10.1111/j.1349-7006.2012.02265.x Google Scholar
  26. 26.
    Qiao L, Xu Z, Zhao T, Zhao Z, Shi M, Zhao RC, Ye L, Zhang X (2008) Suppression of tumorigenesis by human mesenchymal stem cells in a hepatoma model. Cell Res 18(4):500–507. doi: 10.1038/cr.2008.40 PubMedCrossRefGoogle Scholar
  27. 27.
    Holliday DL, Hughes S, Shaw JA, Walker RA, Jones JL (2007) Intrinsic genetic characteristics determine tumor-modifying capacity of fibroblasts: matrix metalloproteinase-3 5A/5A genotype enhances breast cancer cell invasion. Breast Cancer Res 9(5):R67. doi: 10.1186/bcr1775 PubMedCrossRefGoogle Scholar
  28. 28.
    Allred DC, Mohsin SK, Fuqua SA (2001) Histological and biological evolution of human premalignant breast disease. Endocr Relat Cancer 8(1):47–61PubMedCrossRefGoogle Scholar
  29. 29.
    Luo M, Fan H, Nagy T, Wei H, Wang C, Liu S, Wicha MS, Guan JL (2009) Mammary epithelial-specific ablation of the focal adhesion kinase suppresses mammary tumorigenesis by affecting mammary cancer stem/progenitor cells. Cancer Res 69(2):466–474. doi: 10.1158/0008-5472.CAN-08-3078 PubMedCrossRefGoogle Scholar
  30. 30.
    Loebinger MR, Eddaoudi A, Davies D, Janes SM (2009) Mesenchymal stem cell delivery of TRAIL can eliminate metastatic cancer. Cancer Res 69(10):4134–4142. doi: 10.1158/0008-5472.CAN-08-4698 PubMedCrossRefGoogle Scholar
  31. 31.
    Oh J, Takahashi R, Kondo S, Mizoguchi A, Adachi E, Sasahara RM, Nishimura S, Imamura Y, Kitayama H, Alexander DB, Ide C, Horan TP, Arakawa T, Yoshida H, Nishikawa S, Itoh Y, Seiki M, Itohara S, Takahashi C, Noda M (2001) The membrane-anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis. Cell 107(6):789–800PubMedCrossRefGoogle Scholar
  32. 32.
    Jones ML, Ewing CM, Isaacs WB, Getzenberg RH (2011) Prostate cancer-derived angiogenin stimulates the invasion of prostate fibroblasts. J Cell Mol Med. doi: 10.1111/j.1582-4934.2011.01283.x PubMedGoogle Scholar
  33. 33.
    Iliopoulos D, Hirsch HA, Wang G, Struhl K (2011) Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion. Proc Natl Acad Sci USA 108(4):1397–1402. doi: 10.1073/pnas.1018898108 PubMedCrossRefGoogle Scholar
  34. 34.
    Muraoka RS, Koh Y, Roebuck LR, Sanders ME, Brantley-Sieders D, Gorska AE, Moses HL, Arteaga CL (2003) Increased malignancy of Neu-induced mammary tumors overexpressing active transforming growth factor beta1. Mol Cell Biol 23(23):8691–8703PubMedCrossRefGoogle Scholar
  35. 35.
    Tang B, Vu M, Booker T, Santner SJ, Miller FR, Anver MR, Wakefield LM (2003) TGF-beta switches from tumor suppressor to prometastatic factor in a model of breast cancer progression. J Clin Invest 112(7):1116–1124. doi: 10.1172/JCI18899 PubMedGoogle Scholar
  36. 36.
    Boucharaba A, Guillet B, Menaa F, Hneino M, van Wijnen AJ, Clezardin P, Peyruchaud O (2009) Bioactive lipids lysophosphatidic acid and sphingosine 1-phosphate mediate breast cancer cell biological functions through distinct mechanisms. Oncol Res 18(4):173–184PubMedCrossRefGoogle Scholar
  37. 37.
    Pederson L, Winding B, Foged NT, Spelsberg TC, Oursler MJ (1999) Identification of breast cancer cell line-derived paracrine factors that stimulate osteoclast activity. Cancer Res 59(22):5849–5855PubMedGoogle Scholar
  38. 38.
    Kim DS, Kim JH, Lee JK, Choi SJ, Kim JS, Jeun SS, Oh W, Yang YS, Chang JW (2009) Overexpression of CXC chemokine receptors is required for the superior glioma-tracking property of umbilical cord blood-derived mesenchymal stem cells. Stem Cells Dev 18(3):511–519. doi: 10.1089/scd.2008.0050 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Christiane Senst
    • 1
  • Timo Nazari-Shafti
    • 1
  • Stefan Kruger
    • 1
  • Kirstin Höner Zu Bentrup
    • 2
  • Charles L. Dupin
    • 5
  • Abigail E. Chaffin
    • 3
  • Sudesh K. Srivastav
    • 6
  • Philipp M. Wörner
    • 1
  • Asim B. Abdel-Mageed
    • 4
  • Eckhard U. Alt
    • 1
    • 7
  • Reza Izadpanah
    • 1
    • 3
    • 8
    Email author
  1. 1.Applied Stem Cell Laboratory, Heart and Vascular Institute, Department of MedicineTulane University Health Sciences CenterNew OrleansUSA
  2. 2.Department of Microbiology and ImmunologyTulane University Health Sciences CenterNew OrleansUSA
  3. 3.Department of SurgeryTulane University Health Sciences CenterNew OrleansUSA
  4. 4.Departments of UrologyTulane University Health Sciences CenterNew OrleansUSA
  5. 5.Division of Plastic and Reconstructive SurgeryLouisiana State UniversityNew OrleansUSA
  6. 6.Department of BiostatisticsTulane University School of Public Health and Tropical MedicineNew OrleansUSA
  7. 7.Isar Medical Center, Department of MedicineInterdisciplinary Stem Cell LaboratoryMunichGermany
  8. 8.Heart and Vascular InstituteTulane University Health Sciences CenterNew OrleansUSA

Personalised recommendations