Breast Cancer Research and Treatment

, Volume 136, Issue 3, pp 847–857

The SLC4A7 variant rs4973768 is associated with breast cancer risk: evidence from a case–control study and a meta-analysis

  • Wei Chen
  • Rong Zhong
  • Jie Ming
  • Li Zou
  • Beibei Zhu
  • Xuzai Lu
  • Juntao Ke
  • Yu Zhang
  • Li Liu
  • Xiaoping Miao
  • Tao Huang
Epidemiology

Abstract

Recent genome-wide association study has identified a genetic variant rs4973768, located in 3′-UTR of solute carrier family 4, sodium bicarbonate cotransporter, member 7 (SLC4A7), was associated with increased risk of breast cancer (BC). However, several following replication studies cannot yield consistent results. We thus conducted a hospital-based case–control study including 485 patients and 514 controls, combined a meta-analysis including 108,632 cases and 135,818 controls to explore the relationship between this variant and BC risk. Our case–control study showed that rs4973768 was significantly associated with increased BC risk with the odds ratio (OR) of 1.29 (95 % confidence interval [CI]: 1.04–1.60) under the allelic model. In addition, the meta-analysis also indicated that the variant slightly increased the risk of BC with the pooled OR of the per-allele effect being 1.08 (95 % CI: 1.04–1.11) although with significant heterogeneity between studies. Stratified analyses showed that ethnicity, sample size, and study design may explain part of the heterogeneity. Moreover, the bioinformatics analysis suggested that this variant may influence the transcriptional capacity of SLC4A7. In summary, our results showed that the SLC4A7 variant, rs4973768, is associated with risk of BC although the underlying biologic mechanism warrants further studies.

Keywords

Breast cancer rs4973768 Case–control study Meta-analysis 

Abbreviation

BC

Breast cancer

GWASs

Genome-wide association studies

OR

Odds ratio

CI

Confidence interval

Supplementary material

10549_2012_2309_MOESM1_ESM.doc (212 kb)
Supplementary material 1 (DOC 211 kb)

References

  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90PubMedCrossRefGoogle Scholar
  2. 2.
    Porter P (2008) “Westernizing” women’s risks? Breast cancer in lower-income countries. N Engl J Med 358(3):213–216PubMedCrossRefGoogle Scholar
  3. 3.
    Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, Pukkala E, Skytthe A, Hemminki K (2000) Environmental and heritable factors in the causation of cancer—analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 343(2):78–85PubMedCrossRefGoogle Scholar
  4. 4.
    Barrett SV (2010) Breast cancer. J R Coll Physicians Edinb 40(4):335–338 (quiz 339)PubMedCrossRefGoogle Scholar
  5. 5.
    Sun T, Miao X, Wang J, Tan W, Zhou Y, Yu C, Lin D (2004) Functional Phe31Ile polymorphism in Aurora A and risk of breast carcinoma. Carcinogenesis 25(11):2225–2230PubMedCrossRefGoogle Scholar
  6. 6.
    Renwick A, Thompson D, Seal S, Kelly P, Chagtai T, Ahmed M, North B, Jayatilake H, Barfoot R, Spanova K et al (2006) ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles. Nat Genet 38(8):873–875PubMedCrossRefGoogle Scholar
  7. 7.
    Liu L, Yuan P, Wu C, Zhang X, Guo H, Zhong R, Xu Y, Wu J, Duan S, Rui R et al (2011) A functional −77T>C polymorphism in XRCC1 is associated with risk of breast cancer. Breast Cancer Res Treat 125(2):479–487PubMedCrossRefGoogle Scholar
  8. 8.
    Zhang B, Beeghly-Fadiel A, Long J, Zheng W (2011) Genetic variants associated with breast-cancer risk: comprehensive research synopsis, meta-analysis, and epidemiological evidence. Lancet Oncol 12(5):477–488PubMedCrossRefGoogle Scholar
  9. 9.
    Stacey SN, Manolescu A, Sulem P, Rafnar T, Gudmundsson J, Gudjonsson SA, Masson G, Jakobsdottir M, Thorlacius S, Helgason A et al (2007) Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor-positive breast cancer. Nat Genet 39(7):865–869PubMedCrossRefGoogle Scholar
  10. 10.
    Easton DF, Pooley KA, Dunning AM, Pharoah PD, Thompson D, Ballinger DG, Struewing JP, Morrison J, Field H, Luben R et al (2007) Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447(7148):1087–1093PubMedCrossRefGoogle Scholar
  11. 11.
    Hunter DJ, Kraft P, Jacobs KB, Cox DG, Yeager M, Hankinson SE, Wacholder S, Wang Z, Welch R, Hutchinson A et al (2007) A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat Genet 39(7):870–874PubMedCrossRefGoogle Scholar
  12. 12.
    Murabito JM, Rosenberg CL, Finger D, Kreger BE, Levy D, Splansky GL, Antman K, Hwang SJ (2007) A genome-wide association study of breast and prostate cancer in the NHLBI’s Framingham Heart Study. BMC Med Genet 8(Suppl 1):S6PubMedCrossRefGoogle Scholar
  13. 13.
    Ahmed S, Thomas G, Ghoussaini M, Healey CS, Humphreys MK, Platte R, Morrison J, Maranian M, Pooley KA, Luben R et al (2009) Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2. Nat Genet 41(5):585–590PubMedCrossRefGoogle Scholar
  14. 14.
    Thomas G, Jacobs KB, Kraft P, Yeager M, Wacholder S, Cox DG, Hankinson SE, Hutchinson A, Wang Z, Yu K et al (2009) A multistage genome-wide association study in breast cancer identifies two new risk alleles at 1p11.2 and 14q24.1 (RAD51L1). Nat Genet 41(5):579–584PubMedCrossRefGoogle Scholar
  15. 15.
    Zheng W, Long J, Gao YT, Li C, Zheng Y, Xiang YB, Wen W, Levy S, Deming SL, Haines JL et al (2009) Genome-wide association study identifies a new breast cancer susceptibility locus at 6q25.1. Nat Genet 41(3):324–328PubMedCrossRefGoogle Scholar
  16. 16.
    Turnbull C, Ahmed S, Morrison J, Pernet D, Renwick A, Maranian M, Seal S, Ghoussaini M, Hines S, Healey CS et al (2010) Genome-wide association study identifies five new breast cancer susceptibility loci. Nat Genet 42(6):504–507PubMedCrossRefGoogle Scholar
  17. 17.
    Fletcher O, Johnson N, Orr N, Hosking FJ, Gibson LJ, Walker K, Zelenika D, Gut I, Heath S, Palles C et al (2011) Novel breast cancer susceptibility locus at 9q31.2: results of a genome-wide association study. J Natl Cancer Inst 103(5):425–435PubMedCrossRefGoogle Scholar
  18. 18.
    Long J, Cai Q, Sung H, Shi J, Zhang B, Choi JY, Wen W, Delahanty RJ, Lu W, Gao YT et al (2012) Genome-wide association study in east Asians identifies novel susceptibility loci for breast cancer. PLoS Genet 8(2):e1002532PubMedCrossRefGoogle Scholar
  19. 19.
    Shu XO, Long J, Lu W, Li C, Chen WY, Delahanty R, Cheng J, Cai H, Zheng Y, Shi J et al (2012) Novel genetic markers of breast cancer survival identified by a genome-wide association study. Cancer Res 72(5):1182–1189PubMedCrossRefGoogle Scholar
  20. 20.
    Chen Y, Choong LY, Lin Q, Philp R, Wong CH, Ang BK, Tan YL, Loh MC, Hew CL, Shah N et al (2007) Differential expression of novel tyrosine kinase substrates during breast cancer development. Mol Cell Proteomics 6(12):2072–2087PubMedCrossRefGoogle Scholar
  21. 21.
    Long J, Shu XO, Cai Q, Gao YT, Zheng Y, Li G, Li C, Gu K, Wen W, Xiang YB et al (2010) Evaluation of breast cancer susceptibility loci in Chinese women. Cancer Epidemiol Biomark Prev 19(9):2357–2365CrossRefGoogle Scholar
  22. 22.
    Dai J, Hu Z, Jiang Y, Shen H, Dong J, Ma H (2012) Breast cancer risk assessment with five independent genetic variants and two risk factors in Chinese women. Breast Cancer Res 14(1):R17PubMedCrossRefGoogle Scholar
  23. 23.
    Milne RL, Gaudet MM, Spurdle AB, Fasching PA, Couch FJ, Benitez J, Arias Perez JI, Zamora MP, Malats N, Dos Santos Silva I et al (2010) Assessing interactions between the associations of common genetic susceptibility variants, reproductive history and body mass index with breast cancer risk in the Breast Cancer Association Consortium: a combined case–control study. Breast Cancer Res 12(6):R110PubMedCrossRefGoogle Scholar
  24. 24.
    Mulligan AM, Couch FJ, Barrowdale D, Domchek SM, Eccles D, Nevanlinna H, Ramus SJ, Robson M, Sherman M, Spurdle AB et al (2011) Common breast cancer susceptibility alleles are associated with tumour subtypes in BRCA1 and BRCA2 mutation carriers: results from the Consortium of Investigators of Modifiers of BRCA1/2. Breast Cancer Res 13(6):R110PubMedCrossRefGoogle Scholar
  25. 25.
    Kim HC, Lee JY, Sung H, Choi JY, Park SK, Lee KM, Kim YJ, Go MJ, Li L, Cho YS et al (2012) A genome-wide association study identifies a breast cancer risk variant in ERBB4 at 2q34: results from the Seoul Breast Cancer Study. Breast Cancer Res 14(2):R56PubMedCrossRefGoogle Scholar
  26. 26.
    Broeks A, Schmidt MK, Sherman ME, Couch FJ, Hopper JL, Dite GS, Apicella C, Smith LD, Hammet F, Southey MC et al (2011) Low penetrance breast cancer susceptibility loci are associated with specific breast tumor subtypes: findings from the Breast Cancer Association Consortium. Hum Mol Genet 20(16):3289–3303PubMedCrossRefGoogle Scholar
  27. 27.
    Antoniou AC, Beesley J, McGuffog L, Sinilnikova OM, Healey S, Neuhausen SL, Ding YC, Rebbeck TR, Weitzel JN, Lynch HT et al (2010) Common breast cancer susceptibility alleles and the risk of breast cancer for BRCA1 and BRCA2 mutation carriers: implications for risk prediction. Cancer Res 70(23):9742–9754PubMedCrossRefGoogle Scholar
  28. 28.
    Han W, Woo JH, Yu JH, Lee MJ, Moon HG, Kang D, Noh DY (2011) Common genetic variants associated with breast cancer in Korean women and differential susceptibility according to intrinsic subtype. Cancer Epidemiol Biomark Prev 20(5):793–798CrossRefGoogle Scholar
  29. 29.
    Stevens KN, Vachon CM, Lee AM, Slager S, Lesnick T, Olswold C, Fasching PA, Miron P, Eccles D, Carpenter JE et al (2011) Common breast cancer susceptibility loci are associated with triple-negative breast cancer. Cancer Res 71(19):6240–6249PubMedCrossRefGoogle Scholar
  30. 30.
    Sueta A, Ito H, Kawase T, Hirose K, Hosono S, Yatabe Y, Tajima K, Tanaka H, Iwata H, Iwase H et al (2012) A genetic risk predictor for breast cancer using a combination of low-penetrance polymorphisms in a Japanese population. Breast Cancer Res Treat 132(2):711–721PubMedCrossRefGoogle Scholar
  31. 31.
    Chen F, Stram DO, Le Marchand L, Monroe KR, Kolonel LN, Henderson BE, Haiman CA (2011) Caution in generalizing known genetic risk markers for breast cancer across all ethnic/racial populations. Eur J Hum Genet 19(2):243–245PubMedCrossRefGoogle Scholar
  32. 32.
    Lau J, Ioannidis JP, Schmid CH (1997) Quantitative synthesis in systematic reviews. Ann Intern Med 127(9):820–826PubMedGoogle Scholar
  33. 33.
    Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327(7414):557–560PubMedCrossRefGoogle Scholar
  34. 34.
    Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22(4):719–748PubMedGoogle Scholar
  35. 35.
    DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7(3):177–188PubMedCrossRefGoogle Scholar
  36. 36.
    Begg CB, Mazumdar M (1994) Operating characteristics of a rank correlation test for publication bias. Biometrics 50(4):1088–1101PubMedCrossRefGoogle Scholar
  37. 37.
    Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315(7109):629–634PubMedCrossRefGoogle Scholar
  38. 38.
    Loizidou MA, Hadjisavvas A, Ioannidis JP, Kyriacou K (2011) Replication of genome-wide discovered breast cancer risk loci in the Cypriot population. Breast Cancer Res Treat 128(1):267–272PubMedCrossRefGoogle Scholar
  39. 39.
    Campa D, Kaaks R, Le Marchand L, Haiman CA, Travis RC, Berg CD, Buring JE, Chanock SJ, Diver WR, Dostal L et al (2011) Interactions between genetic variants and breast cancer risk factors in the Breast and Prostate Cancer Cohort Consortium. J Natl Cancer Inst 103(16):1252–1263PubMedCrossRefGoogle Scholar
  40. 40.
    Hutter CM, Young AM, Ochs-Balcom HM, Carty CL, Wang T, Chen CT, Rohan TE, Kooperberg C, Peters U (2011) Replication of breast cancer GWAS susceptibility loci in the Women’s Health Initiative African American SHARe Study. Cancer Epidemiol Biomark Prev 20(9):1950–1959CrossRefGoogle Scholar
  41. 41.
    Lin CY, Ho CM, Bau DT, Yang SF, Liu SH, Lin PH, Lin TH, Tien N, Shih MC, Lu JJ (2012) Evaluation of breast cancer susceptibility loci on 2q35, 3p24, 17q23 and FGFR2 genes in Taiwanese women with breast cancer. Anticancer Res 32(2):475–482PubMedGoogle Scholar
  42. 42.
    Ishiguro H, Walther D, Arinami T, Uhl GR (2007) Variation in a bicarbonate co-transporter gene family member SLC4A7 is associated with propensity to addictions: a study using fine-mapping and three samples. Addiction 102(8):1320–1325PubMedCrossRefGoogle Scholar
  43. 43.
    Kumar S, Flacke JP, Kostin S, Appukuttan A, Reusch HP, Ladilov Y (2011) SLC4A7 sodium bicarbonate co-transporter controls mitochondrial apoptosis in ischaemic coronary endothelial cells. Cardiovasc Res 89(2):392–400PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Wei Chen
    • 1
    • 2
  • Rong Zhong
    • 1
  • Jie Ming
    • 2
  • Li Zou
    • 1
  • Beibei Zhu
    • 1
  • Xuzai Lu
    • 1
  • Juntao Ke
    • 1
  • Yu Zhang
    • 1
  • Li Liu
    • 3
  • Xiaoping Miao
    • 1
  • Tao Huang
    • 2
  1. 1.Ministry of Education Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
  2. 2.Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
  3. 3.Guangdong Key Lab of Molecular Epidemiology, Department of Epidemiology and Biostatistics, School of Public HealthGuangdong Pharmaceutical UniversityGuangzhouChina

Personalised recommendations