Breast Cancer Research and Treatment

, Volume 136, Issue 3, pp 635–645 | Cite as

Use of antidepressants and the risk of breast cancer: a meta-analysis

Review

Abstract

The goal of this study was to perform a meta-analysis to examine the association between the use of antidepressants (AD) and the risk of breast cancer. We searched the EMBASE and MEDLINE databases from inception through February 25, 2012, using search terms related to ADs and breast cancer. Two evaluators independently reviewed and selected articles and extracted data based on predetermined selection criteria. Pooled effect estimates were obtained by using random- and fixed effects meta-analyses. Of the 3,209 titles identified, 18 articles met the inclusion criteria. The overall risk of breast cancer did not increase among AD users [adjusted odds ratio (aOR) 1.02; 95 % CI 0.96–1.08]. Those who took tricyclic antidepressants (TCAs) or selective serotonin reuptake inhibitors (SSRIs) were not at increased risks of breast cancer. In subgroup meta-analyses, null associations were consistent across the type of AD, funding sources, the number of adjusted variables, medication dose, the ascertainment of exposure, and methodological quality. In subgroup analyses based on exposure duration, a marginal association was observed for the use of SSRIs < 1–2 years (aOR 1.10; 95 % CI 1.02–1.19). However, this effect was attenuated over time and those using SSRIs for more than 1–2 years had no elevated breast cancer risk. These results support the lack of a clinically meaningful association between AD use and the development of breast cancer and provide considerable reassurance. Given that the data collected to date do not support changing the current prescribing patterns for ADs, the important benefits of AD therapy must be considered.

Keywords

Antidepressants Selective serotonin reuptake inhibitors Tricyclic antidepressants Breast cancer Meta-analysis 

Notes

Acknowledgments

This work was supported by National Research Foundation of Korea (NRF) Grant funded by the Korean Government (grant number 2012-0003761).

References

  1. 1.
    McPherson K, Steel CM, Dixon JM (2000) ABC of breast diseases. Breast cancer—epidemiology, risk factors, and genetics. BMJ 321(7261):624–628PubMedCrossRefGoogle Scholar
  2. 2.
    Breast Cancer Statistics Worldwide (2012) http://www.worldwidebreastcancercom/learn/breast-cancer-statistics-worldwide/. Accessed July 2012 [Internet]
  3. 3.
    Meijer WE, Heerdink ER, Leufkens HG, Herings RM, Egberts AC, Nolen WA (2004) Incidence and determinants of long-term use of antidepressants. Eur J Clin Pharmacol 60(1):57–61PubMedCrossRefGoogle Scholar
  4. 4.
    Worldwide Info Forum (2012) http://wwwworldwideinfoforumcom/forums/antidepressant_use_doubles_html. Accessed July 2012 [Internet]
  5. 5.
    Brandes LJ, Arron RJ, Bogdanovic RP, Tong J, Zaborniak CL, Hogg GR, Warrington RC, Fang W, LaBella FS (1992) Stimulation of malignant growth in rodents by antidepressant drugs at clinically relevant doses. Cancer Res 52(13):3796–3800PubMedGoogle Scholar
  6. 6.
    Abdul M, Logothetis CJ, Hoosein NM (1995) Growth-inhibitory effects of serotonin uptake inhibitors on human prostate carcinoma cell lines. J Urol 154(1):247–250PubMedCrossRefGoogle Scholar
  7. 7.
    Volpe DA, Ellison CD, Parchment RE, Grieshaber CK, Faustino PJ (2003) Effects of amitriptyline and fluoxetine upon the in vitro proliferation of tumor cell lines. J Exp Therap Oncol 3(4):169–184CrossRefGoogle Scholar
  8. 8.
    Nordenberg J, Fenig E, Landau M, Weizman R, Weizman A (1999) Effects of psychotropic drugs on cell proliferation and differentiation. Biochem Pharmacol 58(8):1229–1236PubMedCrossRefGoogle Scholar
  9. 9.
    Bahl S, Cotterchio M, Kreiger N (2003) Use of antidepressant medications and the possible association with breast cancer risk: a review. Psychother Psychosom 72(4):185–194PubMedCrossRefGoogle Scholar
  10. 10.
    Lawlor DA, Juni P, Ebrahim S, Egger M (2003) Systematic review of the epidemiologic and trial evidence of an association between antidepressant medication and breast cancer. J Clin Epidemiol 56(2):155–163PubMedCrossRefGoogle Scholar
  11. 11.
    Coogan PF (2006) Review of the epidemiological literature on antidepressant use and breast cancer risk. Expert Rev Neurother 6(9):1363–1374PubMedCrossRefGoogle Scholar
  12. 12.
    Wells G, Shea B, O’Connell D et al (2012) The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ottawa Hospital Research Institute, Ottawa, ON. www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Accessed June 2012 [Internet]
  13. 13.
    Mayo Clinic Staff (2012) Risk factors of breast cancer. Mayo Clinic. http://www.mayoclinic.com/health/breast-cancer/DS00328/DSECTION=risk-factors. Accessed June 2012 [Internet]
  14. 14.
    WebMD (2012) Risk factors for breast cancer. WebMD http://www.webmd.com/breast-cancer/guide/overview-risks-breast-cancer. Accessed June 2012 [Internet]
  15. 15.
    Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21(11):1539–1558PubMedCrossRefGoogle Scholar
  16. 16.
    Thompson SG, Higgins JPT (2002) How should meta-regression analyses be undertaken and interpreted? Stat Med 21:1559–1573PubMedCrossRefGoogle Scholar
  17. 17.
    Kelly JP, Rosenberg L, Palmer JR, Rao RS, Strom BL, Stolley PD, Zauber AG, Shapiro S (1999) Risk of breast cancer according to use of antidepressants, phenothiazines, and antihistamines. Am J Epidemiol 150(8):861–868PubMedCrossRefGoogle Scholar
  18. 18.
    Cotterchio M, Kreiger N, Darlington G, Steingart A (2000) Antidepressant medication use and breast cancer risk. Am J Epidemiol 151(10):951–957PubMedCrossRefGoogle Scholar
  19. 19.
    Kato I, Zeleniuch-Jacquotte A, Toniolo PG, Akhmedkhanov A, Koenig K, Shore RE (2000) Psychotropic medication use and risk of hormone-related cancers: the New York University Women’s Health Study. J Public Health Med 22(2):155–160PubMedCrossRefGoogle Scholar
  20. 20.
    Wang PS, Walker AM, Tsuang MT, Orav EJ, Levin R, Avorn J (2001) Antidepressant use and the risk of breast cancer: a non-association. J Clin Epidemiol 54(7):728–734PubMedCrossRefGoogle Scholar
  21. 21.
    Moorman PG, Grubber JM, Millikan RC, Newman B (2003) Antidepressant medications and their association with invasive breast cancer and carcinoma in situ of the breast. Epidemiology 14(3):307–314PubMedGoogle Scholar
  22. 22.
    Steingart A, Cotterchio M, Kreiger N, Sloan M (2003) Antidepressant medication use and breast cancer risk: a case–control study. Int J Epidemiol 32(6):961–966PubMedCrossRefGoogle Scholar
  23. 23.
    Coogan PF, Palmer JR, Strom BL, Rosenberg L (2005) Use of selective serotonin reuptake inhibitors and the risk of breast cancer. Am J Epidemiol 162(9):835–838PubMedCrossRefGoogle Scholar
  24. 24.
    Gonzalez-Perez A, Garcia Rodriguez LA (2005) Breast cancer risk among users of antidepressant medications. Epidemiology 16(1):101–105PubMedCrossRefGoogle Scholar
  25. 25.
    Haque R, Enger SM, Chen W, Petitti DB (2005) Breast cancer risk in a large cohort of female antidepressant medication users. Cancer Lett 221(1):61–65PubMedCrossRefGoogle Scholar
  26. 26.
    Chien C, Li CI, Heckbert SR, Malone KE, Boudreau DM, Daling JR (2006) Antidepressant use and breast cancer risk. Breast Cancer Res Treat 95(2):130–140CrossRefGoogle Scholar
  27. 27.
    Fulton-Kehoe D, Rossing MA, Rutter C, Mandelson MT, Weiss NS (2006) Use of antidepressant medications in relation to the incidence of breast cancer. Br J Cancer 94(7):1071–1078PubMedCrossRefGoogle Scholar
  28. 28.
    Tamim H, Boivin JF, Hanley J, Stang M, Collet JP (2006) Risk of breast cancer in association with exposure to two different groups of tricyclic antidepressants. Pharmacoepidemiol Drug Saf 15(10):689–697PubMedCrossRefGoogle Scholar
  29. 29.
    Davis S, Mirick DK (2007) Medication use and the risk of breast cancer. Eur J Epidemiol 22(5):319–325PubMedCrossRefGoogle Scholar
  30. 30.
    Coogan PF, Strom BL, Rosenberg L (2008) SSRI use and breast cancer risk by hormone receptor status. Breast Cancer Res Treat 109(3):527–531PubMedCrossRefGoogle Scholar
  31. 31.
    Wernli KJ, Hampton JM, Trentham-Dietz A, Newcomb PA (2009) Antidepressant medication use and breast cancer risk. Pharmacoepidemiol Drug Saf 18(4):284–290PubMedCrossRefGoogle Scholar
  32. 32.
    Ashbury JE, Levesque LE, Beck PA, Aronson KJ (2010) A population-based case-control study of Selective Serotonin Reuptake Inhibitors (SSRIs) and breast cancer: The impact of duration of use, cumulative dose and latency. BMC Med 8:90PubMedCrossRefGoogle Scholar
  33. 33.
    Walker AJ, Card T, Bates TE, Muir K (2011) Tricyclic antidepressants and the incidence of certain cancers: a study using the GPRD. Br J Cancer 104(1):193–197PubMedCrossRefGoogle Scholar
  34. 34.
    Haukka J, Sankila R, Klaukka T, Lonnqvist J, Niskanen L, Tanskanen A, Wahlbeck K, Tiihonen J (2010) Incidence of cancer and antidepressant medication: record linkage study. Int J Cancer 126(1):285–296PubMedCrossRefGoogle Scholar
  35. 35.
    Tworoger SS, Eliassen AH, Rosner B, Sluss P, Hankinson SE (2004) Plasma prolactin concentrations and risk of postmenopausal breast cancer. Cancer Res 64(18):6814–6819PubMedCrossRefGoogle Scholar
  36. 36.
    Hankinson SE, Willett WC, Michaud DS, Manson JE, Colditz GA, Longcope C, Rosner B, Speizer FE (1999) Plasma prolactin levels and subsequent risk of breast cancer in postmenopausal women. J Natl Cancer Inst 91(7):629–634PubMedCrossRefGoogle Scholar
  37. 37.
    Kabuto M, Akiba S, Stevens RG, Neriishi K, Land CE (2000) A prospective study of estradiol and breast cancer in Japanese women. Cancer Epidemiol Biomarkers Prev 9(6):575–579PubMedGoogle Scholar
  38. 38.
    Wang DY, De Stavola BL, Bulbrook RD, Allen DS, Kwa HG, Fentiman IS, Hayward JL, Millis RR (1992) Relationship of blood prolactin levels and the risk of subsequent breast cancer. Int J Epidemiol 21(2):214–221PubMedCrossRefGoogle Scholar
  39. 39.
    Welsch CW, Nagasawa H (1977) Prolactin and murine mammary tumorigenesis: a review. Cancer Res 37(4):951–963PubMedGoogle Scholar
  40. 40.
    Kiss R, de Launoit Y, L’Hermite-Baleriaux M, L’Hermite M, Paridaens RJ, Danguy AJ, Pasteels JL (1987) Effect of prolactin and estradiol on cell proliferation in the uterus and the MXT mouse mammary neoplasm. J Natl Cancer Inst 78(5):993–998PubMedGoogle Scholar
  41. 41.
    Cowen PJ, Sargent PA (1997) Changes in plasma prolactin during SSRI treatment: evidence for a delayed increase in 5-HT neurotransmission. J Psychopharmacol 11(4):345–348PubMedCrossRefGoogle Scholar
  42. 42.
    Turkington RW (1972) Prolactin secretion in patients treated with various drugs: phenothiazines, tricyclic antidepressants, reserpine, and methyldopa. Arch Intern Med 130(3):349–354PubMedCrossRefGoogle Scholar
  43. 43.
    Krulich L (1975) The effect of a serotonin uptake inhibitor (Lilly 110140) on the secretion of prolactin in the rat. Life Sci 17(7):1141–1144PubMedCrossRefGoogle Scholar
  44. 44.
    Urban RJ, Veldhuis JD (1991) A selective serotonin reuptake inhibitor, fluoxetine hydrochloride, modulates the pulsatile release of prolactin in postmenopausal women. Am J Obstet Gynecol 164(1 Pt 1):147–152PubMedGoogle Scholar
  45. 45.
    Leatherman ME, Ekstrom RD, Corrigan M, Carson SW, Mason G, Golden RN (1993) Central serotonergic changes following antidepressant treatment: a neuroendocrine assessment. Psychopharmacol Bull 29(2):149–154PubMedGoogle Scholar
  46. 46.
    Dulchin MC, Oquendo MA, Malone KM, Ellis SP, Li S, Mann JJ (2001) Prolactin response to dl-fenfluramine challenge before and after treatment with paroxetine. Neuropsychopharmacology 25(3):395–401PubMedCrossRefGoogle Scholar
  47. 47.
    Molitch ME (2005) Medication-induced hyperprolactinemia. Mayo Clinic Proc 80(8):1050–1057CrossRefGoogle Scholar
  48. 48.
    Hermann B, Vollmer I, Holsboer F, Rupprecht R (2001) Antidepressants do not modulate estrogen receptor alpha-mediated gene expression. J Neural Transm 108(10):1197–1202PubMedCrossRefGoogle Scholar
  49. 49.
    Feuer G (1983) Drug control of steroid metabolism by the hepatic endoplasmic reticulum. Drug Metab Rev 14(6):1119–1144PubMedCrossRefGoogle Scholar
  50. 50.
    Kuiper GG, Shughrue PJ, Merchenthaler I, Gustafsson JA (1998) The estrogen receptor beta subtype: a novel mediator of estrogen action in neuroendocrine systems. Front Neuroendocrinol 19(4):253–286PubMedCrossRefGoogle Scholar
  51. 51.
    Miller AH, Spencer RL, McEwen BS, Stein M (1993) Depression, adrenal steroids, and the immune system. Ann Med 25(5):481–487PubMedCrossRefGoogle Scholar
  52. 52.
    Stein M, Miller AH, Trestman RL (1991) Depression, the immune system, and health and illness. Findings in search of meaning. Arch Gen Psychiatry 48(2):171–177PubMedCrossRefGoogle Scholar
  53. 53.
    Eisen JN, Irwin J, Quay J, Livnat S (1989) The effect of antidepressants on immune function in mice. Biol Psychiatry 26(8):805–817PubMedCrossRefGoogle Scholar
  54. 54.
    Laudenslager ML, Clarke AS (2000) Antidepressant treatment during social challenge prior to 1 year of age affects immune and endocrine responses in adult macaques. Psychiatry Res 95(1):25–34PubMedCrossRefGoogle Scholar
  55. 55.
    Brandes LJ, Bogdanovic RP, Cawker MD, LaBella FS (1987) Histamine and growth: interaction of antiestrogen binding site ligands with a novel histamine site that may be associated with calcium channels. Cancer Res 47(15):4025–4031PubMedGoogle Scholar
  56. 56.
    Brandes LJ, LaBella FS, Glavin GB, Paraskevas F, Saxena SP, McNicol A, Gerrard JM (1990) Histamine as an intracellular messenger. Biochem Pharmacol 40(8):1677–1681PubMedCrossRefGoogle Scholar
  57. 57.
    Psychology Today (2012) Depression hurts the immune system. http://wwwpsychologytodaycom/articles/200312/depression-hurts-the-immune-system. Accessed July 2012 [Internet]
  58. 58.
    Basso AM, Depiante-Depaoli M, Molina VA (1992) Chronic variable stress facilitates tumoral growth: reversal by imipramine administration. Life Sci 50(23):1789–1796PubMedCrossRefGoogle Scholar
  59. 59.
    Satin JR, Linden W, Phillips MJ (2009) Depression as a predictor of disease progression and mortality in cancer patients: a meta-analysis. Cancer 115(22):5349–5361PubMedCrossRefGoogle Scholar
  60. 60.
    Giese-Davis J, Collie K, Rancourt KM, Neri E, Kraemer HC, Spiegel D (2011) Decrease in depression symptoms is associated with longer survival in patients with metastatic breast cancer: a secondary analysis. J Clin Oncol 29(4):413–420PubMedCrossRefGoogle Scholar
  61. 61.
    Spiegel D, Giese-Davis J (2003) Depression and cancer: mechanisms and disease progression. Biol Psychiatry 54(3):269–282PubMedCrossRefGoogle Scholar
  62. 62.
    Eom CS, Jeon CY, Lim JW, Cho EG, Park SM, Lee KS (2011) Use of acid-suppressive drugs and risk of pneumonia: a systematic review and meta-analysis. CMAJ 183(3):310–319PubMedCrossRefGoogle Scholar
  63. 63.
    Eom CS, Park SM, Myung SK, Yun JM, Ahn JS (2011) Use of acid-suppressive drugs and risk of fracture: a meta-analysis of observational studies. Ann Fam Med 9(3):257–267PubMedCrossRefGoogle Scholar
  64. 64.
    Eom CS, Lee HK, Ye S, Park SM, Cho KH (2012) Use of selective serotonin reuptake inhibitors and risk of fracture: a systematic review and meta-analysis. J Bone Miner Res 27(5):1186–1195PubMedCrossRefGoogle Scholar
  65. 65.
    Moride Y, Abenhaim L (1994) Evidence of the depletion of susceptibles effect in non-experimental pharmacoepidemiologic research. J Clin Epidemiol 47(7):731–737PubMedCrossRefGoogle Scholar
  66. 66.
    Donaldson LJ, Reckless IP, Scholes S, Mindell JS, Shelton NJ (2008) The epidemiology of fractures in England. J Epidemiol Community Health 62(2):174–180PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Family MedicineHallym University Chuncheon Sacred Heart HospitalChuncheonSouth Korea
  2. 2.Department of Family Medicine, Seoul National University HospitalSeoul National University College of MedicineSeoulSouth Korea
  3. 3.Department of Family Medicine, Korea University HospitalKorea University College of MedicineSeoulSouth Korea

Personalised recommendations