Breast Cancer Research and Treatment

, Volume 136, Issue 3, pp 805–812 | Cite as

Insulin-like growth factor-1, insulin-like growth factor-binding protein-3, growth hormone, and mammographic density in the Nurses’ Health Studies

  • Megan S. Rice
  • Shelley S. Tworoger
  • Bernard A. Rosner
  • Michael N. Pollak
  • Susan E. Hankinson
  • Rulla M. Tamimi
Epidemiology

Abstract

Higher circulating insulin-like growth factor I (IGF-1) levels have been associated with higher mammographic density among women in some, but not all studies. Also, few studies have examined the association between mammographic density and circulating growth hormone (GH) in premenopausal women. We conducted a cross-sectional study among 783 premenopausal women and 436 postmenopausal women who were controls in breast cancer case–control studies nested in the Nurses’ Health Study (NHS) and NHSII. Participants provided blood samples in 1989–1990 (NHS) or in 1996–1999 (NHSII), and mammograms were obtained near the time of blood draw. Generalized linear models were used to assess the associations of IGF-1, IGF-binding protein-3 (IGFBP-3), IGF-1:IGFBP-3 ratio, and GH with percent mammographic density, total dense area, and total non-dense area. Models were adjusted for potential confounders including age and body mass index (BMI), among others. We also assessed whether the associations varied by age or BMI. In both pre- and postmenopausal women, percent mammographic density was not associated with plasma levels of IGF-1, IGFBP-3, or the IGF-1:IGFBP-3 ratio. In addition, GH was not associated with percent density among premenopausal women in the NHSII. Similarly, total dense area and non-dense area were not significantly associated with any of these analytes. In postmenopausal women, IGF-1 was associated with higher percent mammographic density among women with BMI <25 kg/m2, but not among overweight/obese women. Overall, plasma IGF-1, IGFBP-3, and GH levels were not associated with mammographic density in a sample of premenopausal and postmenopausal women.

Keywords

Insulin-like growth factor 1 Insulin-like growth factor-binding protein-3 Mammographic density Breast cancer 

Abbreviations

NHS

Nurses’ Health Study

IGF-1

Insulin-like growth factor-1

IGFBP-3

Insulin-like growth factor binding protein-3

GH

Growth hormone

BMI

Body mass index

PMH

Postmenopausal hormone

BBD

Benign breast disease

Supplementary material

10549_2012_2303_MOESM1_ESM.doc (118 kb)
Supplementary material 1 (DOC 118 kb)

References

  1. 1.
    Byrne C, Schairer C, Wolfe J, Parekh N, Salane M, Brinton LA, Hoover R, Haile R (1995) Mammographic features and breast cancer risk: effects with time, age, and menopause status. J Natl Cancer Inst 87:1622–1629PubMedCrossRefGoogle Scholar
  2. 2.
    Boyd NF, Byng JW, Jong RA, Fishell EK, Little LE, Miller AB, Lockwood GA, Tritchler DL, Yaffe MJ (1995) Quantitative classification of mammographic densities and breast cancer risk: results from the Canadian national breast screening study. J Natl Cancer Inst 87:670–675PubMedCrossRefGoogle Scholar
  3. 3.
    Brisson J, Brisson B, Cote G, Maunsell E, Berube S, Robert J (2000) Tamoxifen and mammographic breast densities. Cancer Epidemiol Biomarkers Prev 9:911–915PubMedGoogle Scholar
  4. 4.
    Pollak MN, Huynh HT, Lefebvre SP (1992) Tamoxifen reduces serum insulin-like growth factor I (IGF-I). Breast Cancer Res Treat 22:91–100PubMedCrossRefGoogle Scholar
  5. 5.
    Pollak MN, Schernhammer ES, Hankinson SE (2004) Insulin-like growth factors and neoplasia. Nat Rev Cancer 4:505–518PubMedCrossRefGoogle Scholar
  6. 6.
    Kelley KM, Oh Y, Gargosky SE, Gucev Z, Matsumoto T, Hwa V, Ng L, Simpson DM, Rosenfeld RG (1996) Insulin-like growth factor-binding proteins (IGFBPs) and their regulatory dynamics. Int J Biochem Cell Biol 28:619–637PubMedCrossRefGoogle Scholar
  7. 7.
    Key TJ, Appleby PN, Reeves GK, Roddam AW (2010) Insulin-like growth factor 1 (IGF1), IGF binding protein 3 (IGFBP3), and breast cancer risk: pooled individual data analysis of 17 prospective studies. Lancet Oncol 11:530–542PubMedCrossRefGoogle Scholar
  8. 8.
    Byrne C, Colditz GA, Willett WC, Speizer FE, Pollak M, Hankinson SE (2000) Plasma insulin-like growth factor (IGF) I, IGF-binding protein 3, and mammographic density. Cancer Res 60:3744–3748PubMedGoogle Scholar
  9. 9.
    Diorio C, Pollak M, Byrne C, Masse B, Hebert-Croteau N, Yaffe M, Cote G, Berube S, Morin C, Brisson J (2005) Insulin-like growth factor-I, IGF-binding protein-3, and mammographic breast density. Cancer Epidemiol Biomarkers Prev 14:1065–1073PubMedCrossRefGoogle Scholar
  10. 10.
    Boyd NF, Stone J, Martin LJ, Jong R, Fishell E, Yaffe M, Hammond G, Minkin S (2002) The association of breast mitogens with mammographic densities. Br J Cancer 87:876–882PubMedCrossRefGoogle Scholar
  11. 11.
    Maskarinec G, Takata Y, Chen Z, Gram IT, Nagata C, Pagano I, Hayashi K, Arendell L, Skeie G, Rinaldi S, Kaaks R (2007) IGF-I and mammographic density in four geographic locations: a pooled analysis. Int J Cancer 121:1786–1792PubMedCrossRefGoogle Scholar
  12. 12.
    dos Santos Silva I, Johnson N, De Stavola B, Torres-Mejia G, Fletcher O, Allen DS, Allen NE, Key TJ, Fentiman IS, Holly JM, Peto J (2006) The insulin-like growth factor system and mammographic features in premenopausal and postmenopausal women. Cancer Epidemiol Biomarkers Prev 15:449–455PubMedCrossRefGoogle Scholar
  13. 13.
    Aiello EJ, Tworoger SS, Yasui Y, Stanczyk FZ, Potter J, Ulrich CM, Irwin M, McTiernan A (2005) Associations among circulating sex hormones, insulin-like growth factor, lipids, and mammographic density in postmenopausal women. Cancer Epidemiol Biomarkers Prev 14:1411–1417PubMedCrossRefGoogle Scholar
  14. 14.
    Bremnes Y, Ursin G, Bjurstam N, Rinaldi S, Kaaks R, Gram IT (2007) Insulin-like growth factor and mammographic density in postmenopausal Norwegian women. Cancer Epidemiol Biomarkers Prev 16:57–62PubMedCrossRefGoogle Scholar
  15. 15.
    Boyd N, Martin L, Chavez S, Gunasekara A, Salleh A, Melnichouk O, Yaffe M, Friedenreich C, Minkin S, Bronskill M (2009) Breast-tissue composition and other risk factors for breast cancer in young women: a cross-sectional study. Lancet Oncol 10:569–580PubMedCrossRefGoogle Scholar
  16. 16.
    Schernhammer ES, Holly JM, Pollak MN, Hankinson SE (2005) Circulating levels of insulin-like growth factors, their binding proteins, and breast cancer risk. Cancer Epidemiol Biomarkers Prev 14:699–704PubMedCrossRefGoogle Scholar
  17. 17.
    Tworoger SS, Sluss P, Hankinson SE (2006) Association between plasma prolactin concentrations and risk of breast cancer among predominately premenopausal women. Cancer Res 66:2476–2482PubMedCrossRefGoogle Scholar
  18. 18.
    Schernhammer ES, Hankinson SE (2009) Urinary melatonin levels and postmenopausal breast cancer risk in the Nurses’ Health Study cohort. Cancer Epidemiol Biomarkers Prev 18:74–79PubMedCrossRefGoogle Scholar
  19. 19.
    Hankinson SE, Willett WC, Colditz GA, Hunter DJ, Michaud DS, Deroo B, Rosner B, Speizer FE, Pollak M (1998) Circulating concentrations of insulin-like growth factor-I and risk of breast cancer. Lancet 351:1393–1396PubMedCrossRefGoogle Scholar
  20. 20.
    Schernhammer ES, Holly JM, Hunter DJ, Pollak MN, Hankinson SE (2006) Insulin-like growth factor-I, its binding proteins (IGFBP-1 and IGFBP-3), and growth hormone and breast cancer risk in the nurses health study II. Endocr Relat Cancer 13:583–592PubMedCrossRefGoogle Scholar
  21. 21.
    Rosner B, Cook N, Portman R, Daniels S, Falkner B (2008) Determination of blood pressure percentiles in normal-weight children: some methodological issues. Am J Epidemiol 167:653–666PubMedCrossRefGoogle Scholar
  22. 22.
    Missmer SA, Spiegelman D, Bertone-Johnson ER, Barbieri RL, Pollak MN, Hankinson SE (2006) Reproducibility of plasma steroid hormones, prolactin, and insulin-like growth factor levels among premenopausal women over a 2- to 3-year period. Cancer Epidemiol Biomarkers Prev 15:972–978PubMedCrossRefGoogle Scholar
  23. 23.
    Hankinson SE, Manson JE, Spiegelman D, Willett WC, Longcope C, Speizer FE (1995) Reproducibility of plasma hormone levels in postmenopausal women over a 2–3-year period. Cancer Epidemiol Biomarkers Prev 4:649–654PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Megan S. Rice
    • 1
    • 2
  • Shelley S. Tworoger
    • 1
    • 2
  • Bernard A. Rosner
    • 1
  • Michael N. Pollak
    • 3
  • Susan E. Hankinson
    • 1
    • 2
    • 4
  • Rulla M. Tamimi
    • 1
    • 2
  1. 1.Channing Division of Network Medicine, Department of MedicineBrigham and Women’s Hospital, Harvard Medical SchoolBostonUSA
  2. 2.Department of EpidemiologyHarvard School of Public HealthBostonUSA
  3. 3.Department of Medicine and OncologyMcGill UniversityMontrealCanada
  4. 4.Division of Biostatistics and Epidemiology, School of Public Health and Health SciencesUniversity of MassachusettsAmherstUSA

Personalised recommendations