Breast Cancer Research and Treatment

, Volume 136, Issue 1, pp 35–43 | Cite as

Lobular histology and response to neoadjuvant chemotherapy in invasive breast cancer

  • Esther H. Lips
  • Rita A. Mukhtar
  • Christina Yau
  • Jorma J. de Ronde
  • Chad Livasy
  • Lisa A. Carey
  • Claudette E. Loo
  • Marie-Jeanne T. F. D. Vrancken-Peeters
  • Gabe S. Sonke
  • Donald A. Berry
  • Laura J. van‘t Veer
  • Laura J. Esserman
  • Jelle Wesseling
  • Sjoerd Rodenhuis
  • E. Shelley Hwang
  • I-SPY TRIAL Investigators
Preclinical study


Invasive lobular carcinoma (ILC) has been reported to be less responsive to neoadjuvant chemotherapy (NAC) than invasive ductal carcinoma (IDC). We sought to determine whether ILC histology indeed predicts poor response to NAC by analyzing tumor characteristics such as protein expression, gene expression, and imaging features, and by comparing NAC response rates to those seen in IDC after adjustment for these factors. We combined datasets from two large prospective NAC trials, including in total 676 patients, of which 75 were of lobular histology. Eligible patients had tumors ≥3 cm in diameter or pathologic documentation of positive nodes, and underwent serial biopsies, expression microarray analysis, and MRI imaging. We compared pathologic complete response (pCR) rates and breast conservation surgery (BCS) rates between ILC and IDC, adjusted for clinicopathologic factors. On univariate analysis, ILCs were significantly less likely to have a pCR after NAC than IDCs (11 vs. 25 %, p = 0.01). However, the known differences in tumor characteristics between the two histologic types, including hormone receptor (HR) status, HER2 status, histological grade, and p53 expression, accounted for this difference with the lowest pCR rates among HR+/HER2− tumors in both ILC and IDC (7 and 5 %, respectively). ILC which were HR− and/or HER2+ had a pCR rate of 25 %. Expression subtyping, particularly the NKI 70-gene signature, was correlated with pCR, although the small numbers of ILC in each group precluded significant associations. BCS rate did not differ between IDC and ILC after adjusting for molecular characteristics. We conclude that ILC represents a heterogeneous group of tumors which are less responsive to NAC than IDC. However, this difference is explained by differences in molecular characteristics, particularly HR and HER2, and independent of lobular histology.


Neoadjuvant chemotherapy Lobular breast cancer Gene expression arrays Predictive factors 



The NKI study was carried out within the framework of CTMM, the Center for Translational Molecular Medicine (, Project Breast CARE Grant 030-104. The authors would like to thank Lennart Mulder for technical assistance in generating the gene expression profiles and Andrew Vincent for statistical review.

Conflict of interest

Laura J. van‘t Veer declares an employment/leadership role and has stock or other ownership interests at Agendia Inc. (Chief Research Officer). The other authors declare no conflict of interest.

Supplementary material

10549_2012_2233_MOESM1_ESM.doc (75 kb)
Supplementary material 1 (DOC 75 kb)


  1. 1.
    Gralow JR, Burstein HJ, Wood W, Hortobagyi GN, Gianni L, von Minckwitz G, Buzdar AU, Smith IE, Symmans WF, Singh B, Winer EP (2008) Preoperative therapy in invasive breast cancer: pathologic assessment and systemic therapy issues in operable disease. J Clin Oncol 26(5):814–819PubMedCrossRefGoogle Scholar
  2. 2.
    Mauri D, Pavlidis N, Ioannidis JP (2005) Neoadjuvant versus adjuvant systemic treatment in breast cancer: a meta-analysis. J Natl Cancer Inst 97(3):188–194PubMedCrossRefGoogle Scholar
  3. 3.
    Fisher B, Bryant J, Wolmark N, Mamounas E, Brown A, Fisher ER, Wickerham DL, Begovic M, DeCillis A, Robidoux A, Margolese RG, Cruz AB Jr, Hoehn JL, Lees AW, Dimitrov NV, Bear HD (1998) Effect of preoperative chemotherapy on the outcome of women with operable breast cancer. J Clin Oncol 16(8):2672–2685PubMedGoogle Scholar
  4. 4.
    Mieog JS, van der Hage JA, van de Velde CJ (2007) Neoadjuvant chemotherapy for operable breast cancer. Br J Surg 94(10):1189–1200PubMedCrossRefGoogle Scholar
  5. 5.
    van der Hage JA, van de Velde CJ, Julien JP, Tubiana-Hulin M, Vandervelden C, Duchateau L (2001) Preoperative chemotherapy in primary operable breast cancer: results from the European Organization for Research and Treatment of Cancer trial 10902. J Clin Oncol 19(22):4224–4237PubMedGoogle Scholar
  6. 6.
    Rastogi P, Anderson SJ, Bear HD, Geyer CE, Kahlenberg MS, Robidoux A, Margolese RG, Hoehn JL, Vogel VG, Dakhil SR, Tamkus D, King KM, Pajon ER, Wright MJ, Robert J, Paik S, Mamounas EP, Wolmark N (2008) Preoperative chemotherapy: updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27. J Clin Oncol 26(5):778–785PubMedCrossRefGoogle Scholar
  7. 7.
    Gonzalez-Angulo AM, Sahin A, Krishnamurthy S, Yang Y, Kau SW, Hortobagyi GN, Cristofanilli M (2006) Biologic markers in axillary node-negative breast cancer: differential expression in invasive ductal carcinoma versus invasive lobular carcinoma. Clin Breast Cancer 7(5):396–400PubMedCrossRefGoogle Scholar
  8. 8.
    Sullivan PS, Apple SK (2009) Should histologic type be taken into account when considering neoadjuvant chemotherapy in breast carcinoma? Breast J 15(2):146–154PubMedCrossRefGoogle Scholar
  9. 9.
    Cristofanilli M, Gonzalez-Angulo A, Sneige N, Kau SW, Broglio K, Theriault RL, Valero V, Buzdar AU, Kuerer H, Buccholz TA, Hortobagyi GN (2005) Invasive lobular carcinoma classic type: response to primary chemotherapy and survival outcomes. J Clin Oncol 23(1):41–48PubMedCrossRefGoogle Scholar
  10. 10.
    Katz A, Saad ED, Porter P, Pusztai L (2007) Primary systemic chemotherapy of invasive lobular carcinoma of the breast. Lancet Oncol 8(1):55–62PubMedCrossRefGoogle Scholar
  11. 11.
    Turashvili G, Bouchal J, Baumforth K, Wei W, Dziechciarkova M, Ehrmann J, Klein J, Fridman E, Skarda J, Srovnal J, Hajduch M, Murray P, Kolar Z (2007) Novel markers for differentiation of lobular and ductal invasive breast carcinomas by laser microdissection and microarray analysis. BMC Cancer 7:55PubMedCrossRefGoogle Scholar
  12. 12.
    Arpino G, Bardou VJ, Clark GM, Elledge RM (2004) Infiltrating lobular carcinoma of the breast: tumor characteristics and clinical outcome. Breast Cancer Res 6(3):R149–R156PubMedCrossRefGoogle Scholar
  13. 13.
    Cocquyt VF, Blondeel PN, Depypere HT, Praet MM, Schelfhout VR, Silva OE, Hurley J, Serreyn RF, Daems KK, Van Belle SJ (2003) Different responses to preoperative chemotherapy for invasive lobular and invasive ductal breast carcinoma. Eur J Surg Oncol 29(4):361–367PubMedCrossRefGoogle Scholar
  14. 14.
    Tubiana-Hulin M, Stevens D, Lasry S, Guinebretiere JM, Bouita L, Cohen-Solal C, Cherel P, Rouesse J (2006) Response to neoadjuvant chemotherapy in lobular and ductal breast carcinomas: a retrospective study on 860 patients from one institution. Ann Oncol 17(8):1228–1233PubMedCrossRefGoogle Scholar
  15. 15.
    Boughey JC, Wagner J, Garrett BJ, Harker L, Middleton LP, Babiera GV, Meric-Bernstam F, Lucci A, Hunt KK, Bedrosian I (2009) Neoadjuvant chemotherapy in invasive lobular carcinoma may not improve rates of breast conservation. Ann Surg Oncol 16(6):1606–1611PubMedCrossRefGoogle Scholar
  16. 16.
    Straver ME, Rutgers EJ, Rodenhuis S, Linn SC, Loo CE, Wesseling J, Russell NS, Oldenburg HS, Antonini N, Vrancken Peeters MT (2010) The relevance of breast cancer subtypes in the outcome of neoadjuvant chemotherapy. Ann Surg Oncol 17(9):2411–2418PubMedCrossRefGoogle Scholar
  17. 17.
    Costa SD, Loibl S, Kaufmann M, Zahm DM, Hilfrich J, Huober J, Eidtmann H, du BA, Blohmer JU, Ataseven B, Weiss E, Tesch H, Gerber B, Baumann KH, Thomssen C, Breitbach GP, Ibishi S, Jackisch C, Mehta K, von MG (2010) Neoadjuvant chemotherapy shows similar response in patients with inflammatory or locally advanced breast cancer when compared with operable breast cancer: a secondary analysis of the GeparTrio trial data. J Clin Oncol 28(1):83–91PubMedCrossRefGoogle Scholar
  18. 18.
    Mathieu MC, Rouzier R, Llombart-Cussac A, Sideris L, Koscielny S, Travagli JP, Contesso G, Delaloge S, Spielmann M (2004) The poor responsiveness of infiltrating lobular breast carcinomas to neoadjuvant chemotherapy can be explained by their biological profile. Eur J Cancer 40(3):342–351PubMedCrossRefGoogle Scholar
  19. 19.
    Wenzel C, Bartsch R, Hussian D, Pluschnig U, Altorjai G, Zielinski CC, Lang A, Haid A, Jakesz R, Gnant M, Steger GG (2007) Invasive ductal carcinoma and invasive lobular carcinoma of breast differ in response following neoadjuvant therapy with epidoxorubicin and docetaxel + G-CSF. Breast Cancer Res Treat 104(1):109–114PubMedCrossRefGoogle Scholar
  20. 20.
    Esserman LJ, Berry DA, Cheang MC, Yau C, Perou CM, Carey L, DeMichele A (2012) Chemotherapy response and recurrence-free survival in neoadjuvant breast cancer depends on biomarker profiles: results from the I-SPY 1 trial (CALGB 150007/150012; ACRIN 6657). Breast Cancer Res Treat 132(3):1049–1062Google Scholar
  21. 21.
    Esserman LJ, Berry DA, DeMichele A, Carey L, Davis SE, Buxton MB, Hudis C, Gray J, Perou CM (2012) Pathologic complete response predicts recurrence-free survival more effectively by cancer subset: results from the I-SPY 1 trial (CALGB 150007/150012; ACRIN 6657). J Clin Oncol. [Epub ahead of print]Google Scholar
  22. 22.
    Hannemann J, Oosterkamp HM, Bosch CA, Velds A, Wessels LF, Loo C, Rutgers EJ, Rodenhuis S, van de Vijver MJ (2005) Changes in gene expression associated with response to neoadjuvant chemotherapy in breast cancer. J Clin Oncol 23(15):3331–3342PubMedCrossRefGoogle Scholar
  23. 23.
    Rodenhuis S, Mandjes IA, Wesseling J, van de Vijver MJ, Peeters MJ, Sonke GS, Linn SC (2010) A simple system for grading the response of breast cancer to neoadjuvant chemotherapy. Ann Oncol 21(3):481–487PubMedCrossRefGoogle Scholar
  24. 24.
    Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T, Davies S, Fauron C, He X, Hu Z, Quackenbush JF, Stijleman IJ, Palazzo J, Marron JS, Nobel AB, Mardis E, Nielsen TO, Ellis MJ, Perou CM, Bernard PS (2009) Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 27(8):1160–1167PubMedCrossRefGoogle Scholar
  25. 25.
    van’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871):530–536Google Scholar
  26. 26.
    Chang HY, Nuyten DS, Sneddon JB, Hastie T, Tibshirani R, Sorlie T, Dai H, He YD, Van’t Veer LJ, Bartelink H, van de RM, Brown PO, van d V (2005) Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. Proc Natl Acad Sci USA 102(10):3738–3743PubMedCrossRefGoogle Scholar
  27. 27.
    Esserman LJ, Kumar AS, Herrera AF, Leung J, Au A, Chen YY, Moore DH, Chen DF, Hellawell J, Wolverton D, Hwang ES, Hylton NM (2006) Magnetic resonance imaging captures the biology of ductal carcinoma in situ. J Clin Oncol 24(28):4603–4610PubMedCrossRefGoogle Scholar
  28. 28.
    Purushotham A, Pinder S, Cariati M, Harries M, Goldhirsch A (2010) Neoadjuvant chemotherapy: not the best option in estrogen receptor-positive, HER2-negative, invasive classical lobular carcinoma of the breast? J Clin Oncol 28(22):3552–3554PubMedCrossRefGoogle Scholar
  29. 29.
    Fadare O, Wang SA, Hileeto D (2008) The expression of cytokeratin 5/6 in invasive lobular carcinoma of the breast: evidence of a basal-like subset? Hum Pathol 39(3):331–336PubMedCrossRefGoogle Scholar
  30. 30.
    Straver ME, Glas AM, Hannemann J, Wesseling J, van de Vijver MJ, Rutgers EJ, Vrancken Peeters MJ, van Tinteren H, Van’t Veer LJ, Rodenhuis S (2010) The 70-gene signature as a response predictor for neoadjuvant chemotherapy in breast cancer. Breast Cancer Res Treat 119(3):551–558PubMedCrossRefGoogle Scholar
  31. 31.
    Padhani AR, Hayes C, Assersohn L, Powles T, Makris A, Suckling J, Leach MO, Husband JE (2006) Prediction of clinicopathologic response of breast cancer to primary chemotherapy at contrast-enhanced MR imaging: initial clinical results. Radiology 239(2):361–374PubMedCrossRefGoogle Scholar
  32. 32.
    Symmans WF, Peintinger F, Hatzis C, Rajan R, Kuerer H, Valero V, Assad L, Poniecka A, Hennessy B, Green M, Buzdar AU, Singletary SE, Hortobagyi GN, Pusztai L (2007) Measurement of residual breast cancer burden to predict survival after neoadjuvant chemotherapy. J Clin Oncol 25(28):4414–4422PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  • Esther H. Lips
    • 1
  • Rita A. Mukhtar
    • 6
  • Christina Yau
    • 7
  • Jorma J. de Ronde
    • 1
  • Chad Livasy
    • 8
  • Lisa A. Carey
    • 8
  • Claudette E. Loo
    • 2
  • Marie-Jeanne T. F. D. Vrancken-Peeters
    • 3
  • Gabe S. Sonke
    • 4
  • Donald A. Berry
    • 9
  • Laura J. van‘t Veer
    • 10
  • Laura J. Esserman
    • 6
  • Jelle Wesseling
    • 5
  • Sjoerd Rodenhuis
    • 4
  • E. Shelley Hwang
    • 6
    • 11
  • I-SPY TRIAL Investigators
  1. 1.Department of Experimental TherapyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
  2. 2.Department of RadiologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
  3. 3.Department of SurgeryThe Netherlands Cancer InstituteAmsterdamThe Netherlands
  4. 4.Department of Medical OncologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
  5. 5.Departments of PathologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
  6. 6.Department of SurgeryUniversity of California, San FranciscoSan FranciscoUSA
  7. 7.Buck Institute for AgingNovatoUSA
  8. 8.Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillChapel HillUSA
  9. 9.Department of BiostatisticsMD Anderson Cancer Center Statistical CenterHoustonUSA
  10. 10.University of California San Francisco Helen Diller Family Comprehensive Cancer CenterSan FranciscoUSA
  11. 11.Department of SurgeryDuke University Comprehensive Cancer CenterDurhamUSA

Personalised recommendations