Breast Cancer Research and Treatment

, Volume 136, Issue 1, pp 9–20

The Piper Fatigue Scale-12 (PFS-12): psychometric findings and item reduction in a cohort of breast cancer survivors

  • Bryce B. Reeve
  • Angela M. Stover
  • Catherine M. Alfano
  • Ashley Wilder Smith
  • Rachel Ballard-Barbash
  • Leslie Bernstein
  • Anne McTiernan
  • Kathy B. Baumgartner
  • Barbara F. Piper
Review

Abstract

Brief, valid measures of fatigue, a prevalent and distressing cancer symptom, are needed for use in research. This study’s primary aim was to create a shortened version of the revised Piper Fatigue Scale (PFS-R) based on data from a diverse cohort of breast cancer survivors. A secondary aim was to determine whether the PFS captured multiple distinct aspects of fatigue (a multidimensional model) or a single overall fatigue factor (a unidimensional model). Breast cancer survivors (n = 799; stages in situ through IIIa; ages 29–86 years) were recruited through three SEER registries (New Mexico, Western Washington, and Los Angeles, CA) as part of the Health, Eating, Activity, and Lifestyle (HEAL) study. Fatigue was measured approximately 3 years post-diagnosis using the 22-item PFS-R that has four subscales (Behavior, Affect, Sensory, and Cognition). Confirmatory factor analysis was used to compare unidimensional and multidimensional models. Six criteria were used to make item selections to shorten the PFS-R: scale’s content validity, items’ relationship with fatigue, content redundancy, differential item functioning by race and/or education, scale reliability, and literacy demand. Factor analyses supported the original 4-factor structure. There was also evidence from the bi-factor model for a dominant underlying fatigue factor. Six items tested positive for differential item functioning between African-American and Caucasian survivors. Four additional items either showed poor association, local dependence, or content validity concerns. After removing these 10 items, the reliability of the PFS-12 subscales ranged from 0.87 to 0.89, compared to 0.90–0.94 prior to item removal. The newly developed PFS-12 can be used to assess fatigue in African-American and Caucasian breast cancer survivors and reduces response burden without compromising reliability or validity. This is the first study to determine PFS literacy demand and to compare PFS-R responses in African-Americans and Caucasian breast cancer survivors. Further testing in diverse populations is warranted.

Keywords

Fatigue Breast cancer survivors Patient-reported outcomes Piper Fatigue Scale Psychometrics 

References

  1. 1.
    Andrykowski MA, Curran SL, Lightner R (1998) Off-treatment fatigue in breast cancer survivors: a controlled comparison. J Behav Med 21(1):1–18PubMedCrossRefGoogle Scholar
  2. 2.
    Barsevick AM, Cleeland CS, Manning DC, O’Mara AM, Reeve BB, Scott JA, Sloan JA, Ascpro (2010) ASCPRO recommendations for the assessment of fatigue as an outcome in clinical trials. J Pain Symptom Manage 39(6):1086–1099. doi:10.1016/j.jpainsymman.2010.02.006 PubMedCrossRefGoogle Scholar
  3. 3.
    Piper BF, Cella D (2010) Cancer-related fatigue: definitions and clinical subtypes. J Natl Compr Cancer Netw 8(8):958–966Google Scholar
  4. 4.
    Esther Kim JE, Dodd MJ, Aouizerat BE, Jahan T, Miaskowski C (2009) A review of the prevalence and impact of multiple symptoms in oncology patients. J Pain Symptom Manage 37(4):715–736. doi:10.1016/j.jpainsymman.2008.04.018 PubMedCrossRefGoogle Scholar
  5. 5.
    Bower JE, Ganz PA, Desmond KA, Rowland JH, Meyerowitz BE, Belin TR (2000) Fatigue in breast cancer survivors: occurrence, correlates, and impact on quality of life. J Clin Oncol 18(4):743–753PubMedGoogle Scholar
  6. 6.
    Meeske K, Smith AW, Alfano CM, McGregor BA, McTiernan A, Baumgartner KB, Malone KE, Reeve BB, Ballard-Barbash R, Bernstein L (2007) Fatigue in breast cancer survivors two to five years post diagnosis: a HEAL Study report. Qual Life Res 16(6):947–960. doi:10.1007/s11136-007-9215-3 PubMedCrossRefGoogle Scholar
  7. 7.
    Dittner AJ, Wessely SC, Brown RG (2004) The assessment of fatigue: a practical guide for clinicians and researchers. J Psychosom Res 56(2):157–170. doi:10.1016/S0022-3999(03)00371-4 PubMedCrossRefGoogle Scholar
  8. 8.
    Piper BF, Dibble SL, Dodd MJ, Weiss MC, Slaughter RE, Paul SM (1998) The revised Piper Fatigue Scale: psychometric evaluation in women with breast cancer. Oncol Nurs Forum 25(4):677–684PubMedGoogle Scholar
  9. 9.
    Theodosopoulou H, Tzavelas G, Kotrosiou E, Raftopoulos V, Konstaninou E, Anatasiou N (2001) Psychometric properties of the revised Piper Fatigue Scale in Greek women with breast cancer. Icus Nurs Web J 8:1–15. doi:1108-7366 Google Scholar
  10. 10.
    Gledhill JA, Rodary C, Mahe C, Laizet C (2002) French validation of the revised Piper Fatigue Scale. Recherche en soins infirmiers 68:50–65PubMedGoogle Scholar
  11. 11.
    Dagnelie PC, Pijls-Johannesma MC, Pijpe A, Boumans BJ, Skrabanja AT, Lambin P, Kempen GI (2006) Psychometric properties of the revised Piper Fatigue Scale in Dutch cancer patients were satisfactory. J Clin Epidemiol 59(6):642–649. doi:10.1016/j.jclinepi.2005.09.015 PubMedCrossRefGoogle Scholar
  12. 12.
    Ostlund U, Gustavsson P, Furst CJ (2007) Translation and cultural adaptation of the Piper Fatigue Scale for use in Sweden. Eur J Oncol Nurs 11(2):133–140. doi:10.1016/j.ejon.2006.04.034 PubMedCrossRefGoogle Scholar
  13. 13.
    Mota DD, Pimenta CA, Piper BF (2009) Fatigue in Brazilian cancer patients, caregivers, and nursing students: a psychometric validation study of the Piper Fatigue Scale-Revised. Support Care Cancer 17(6):645–652. doi:10.1007/s00520-008-0518-x PubMedCrossRefGoogle Scholar
  14. 14.
    McTiernan A, Rajan KB, Tworoger SS, Irwin M, Bernstein L, Baumgartner R, Gilliland F, Stanczyk FZ, Yasui Y, Ballard-Barbash R (2003) Adiposity and sex hormones in postmenopausal breast cancer survivors. Journal of Clin Oncol 21(10):1961–1966. doi:10.1200/JCO.2003.07.057 CrossRefGoogle Scholar
  15. 15.
    Bowen DJ, Alfano CM, McGregor BA, Kuniyuki A, Bernstein L, Meeske K, Baumgartner KB, Fetherolf J, Reeve BB, Smith AW, Ganz PA, McTiernan A, Barbash RB (2007) Possible socioeconomic and ethnic disparities in quality of life in a cohort of breast cancer survivors. Breast Cancer Res Treat 106(1):85–95. doi:10.1007/s10549-006-9479-2 PubMedCrossRefGoogle Scholar
  16. 16.
    Berger AM (1998) Patterns of fatigue and activity and rest during adjuvant breast cancer chemotherapy. Oncol Nurs Forum 25(1):51–62PubMedGoogle Scholar
  17. 17.
    Woo B, Dibble SL, Piper BF, Keating SB, Weiss MC (1998) Differences in fatigue by treatment methods in women with breast cancer. Oncol Nurs Forum 25(5):915–920PubMedGoogle Scholar
  18. 18.
    Wu HS, McSweeney M (2001) Measurement of fatigue in people with cancer. Oncology Nurs Forum 28(9):1371–1384; quiz 1385-1376Google Scholar
  19. 19.
    Reise SP, Morizot J, Hays RD (2007) The role of the bifactor model in resolving dimensionality issues in health outcomes measures. Qual Life Res 16(Suppl 1):19–31. doi:10.1007/s11136-007-9183-7 PubMedCrossRefGoogle Scholar
  20. 20.
    Bentler PM (1990) Comparative fit indexes in structural models. Psychol Bull 107(2):238–246PubMedCrossRefGoogle Scholar
  21. 21.
    West SG, Finch JF, Curran PJ (1995) SEM with nonnormal variables. In: Hoyle RH (ed) Structural equation modeling: concepts issues and applications. Sage Publications, Thousand Oaks, CAGoogle Scholar
  22. 22.
    Hu LT, Bentler PM (1999) Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Struct Equ Model 6(1):1–55. doi:10.1080/10705519909540118 CrossRefGoogle Scholar
  23. 23.
    Browne MW, Cudeck R (1993) Alternative ways of assessing model fit. In: Bollen KA, Long JS (eds) Testing structural equation models. Sage Publications, Newbury Park, CAGoogle Scholar
  24. 24.
    Frost MH, Reeve BB, Liepa AM, Stauffer JW, Hays RD, Mayo FDAP-ROCMG (2007) What is sufficient evidence for the reliability and validity of patient-reported outcome measures? Value Health 10(Suppl 2):S94–S105. doi:10.1111/j.1524-4733.2007.00272.x PubMedCrossRefGoogle Scholar
  25. 25.
    Samejima F (1969) Estimation of latent ability using a response pattern of graded scores. Psychometrika 34(4p2):1Google Scholar
  26. 26.
    Samejima F (1997) Graded response model. In: van der Linden WJ, Hambleton RK (eds) Handbook of modern item response theory. Springer, New York, pp 85–100Google Scholar
  27. 27.
    Reeve BB, Hays RD, Bjorner JB, Cook KF, Crane PK, Teresi JA, Thissen D, Revicki DA, Weiss DJ, Hambleton RK, Liu H, Gershon R, Reise SP, Lai JS, Cella D, Group PC (2007) Psychometric evaluation and calibration of health-related quality of life item banks: plans for the Patient-Reported Outcomes Measurement Information System (PROMIS). Med Care 45(5 Suppl 1):S22–S31. doi:10.1097/01.mlr.0000250483.85507.04 PubMedCrossRefGoogle Scholar
  28. 28.
    Chen WH, Thissen D (1997) Local dependence indexes for item pairs: using item response theory. J Educ Behav Stat 22(3):265–289Google Scholar
  29. 29.
    Nunnally JC, Bernstein IH (1994) Pscyhometric theory, 3rd edn. McGraw-Hill, New YorkGoogle Scholar
  30. 30.
    MetaMetrics, Inc. (2008) What does the Lexile measure mean? http://d1jt5u2s0h3gkt.cloudfront.net/m/cms_page_media/123/What-does-the-Lexile-measure-mean_1.pdf. Accessed 1 May 2012
  31. 31.
    Pilkonis PA, Choi SW, Reise SP, Stover AM, Riley WT, Cella D, Group PC (2011) Item banks for measuring emotional distress from the Patient-Reported Outcomes Measurement Information System (PROMIS(R)): depression, anxiety, and anger. Assessment 18(3):263–283. doi:10.1177/1073191111411667 PubMedCrossRefGoogle Scholar
  32. 32.
    Institute of Medicine (2004) Health literacy: a prescription to end confusion. The National Academies Press, Washington, DCGoogle Scholar
  33. 33.
    Yen WM (1993) Scaling performance assessments—strategies for managing local item dependence. J Educ Meas 30(3):187–213CrossRefGoogle Scholar
  34. 34.
    Annunziata MA, Muzzatti B, Mella S, Narciso D, Giacalone A, Fratino L, Tirelli U (2010) The revised Piper Fatigue Scale (PFS-R) for Italian cancer patients: a validation study. Tumori 96(2):276–281PubMedGoogle Scholar
  35. 35.
    Clark PC, Ashford S, Burt R, Aycock DM, Kimble LP (2006) Factor analysis of the revised Piper Fatigue Scale in a caregiver sample. J Nurs Meas 14(2):71–78PubMedCrossRefGoogle Scholar
  36. 36.
    Alfano CM, Imayama I, Neuhouser ML, Kiecolt-Glaser JK, Smith AW, Meeske K, McTiernan A, Bernstein L, Baumgartner KB, Ulrich CM, Ballard-Barbash R (2012) Fatigue, inflammation, and omega-3 and omega-6 fatty acid intake among breast cancer survivors. J Clin Oncol 30(12):1280–1287. doi:10.1200/JCO.2011.36.4109 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  • Bryce B. Reeve
    • 1
    • 2
  • Angela M. Stover
    • 2
    • 3
  • Catherine M. Alfano
    • 4
  • Ashley Wilder Smith
    • 5
  • Rachel Ballard-Barbash
    • 5
  • Leslie Bernstein
    • 6
  • Anne McTiernan
    • 7
  • Kathy B. Baumgartner
    • 8
  • Barbara F. Piper
    • 9
  1. 1.Department of Health Policy & Management, Gillings School of Global Public HealthUniversity of North Carolina at Chapel HillChapel HillUSA
  2. 2.Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillChapel HillUSA
  3. 3.Department of Health Behavior, Gillings School of Global Public HealthUniversity of North Carolina at Chapel HillChapel HillUSA
  4. 4.Office of Cancer Survivorship, Division of Cancer Control and Population SciencesNational Cancer InstituteBethesdaUSA
  5. 5.Applied Research Program, Division of Cancer Control and Population SciencesNational Cancer InstituteBethesdaUSA
  6. 6.Division of Cancer Etiology, Department of Population SciencesBeckman Research Institute of the City of HopeDuarteUSA
  7. 7.Prevention CenterFred Hutchinson Cancer Research CenterSeattleUSA
  8. 8.Epidemiology and Population HealthUniversity of LouisvilleLouisvilleUSA
  9. 9.University of Arizona School of NursingScottsdaleUSA

Personalised recommendations