Breast Cancer Research and Treatment

, Volume 135, Issue 1, pp 145–152 | Cite as

Comparison of relative versus absolute arm size change as criteria for quantifying breast cancer-related lymphedema: the flaws in current studies and need for universal methodology

  • Marek Ancukiewicz
  • Cynthia L. Miller
  • Melissa N. Skolny
  • Jean O’Toole
  • Laura E. Warren
  • Lauren S. Jammallo
  • Michelle C. Specht
  • Alphonse G. TaghianEmail author
Preclinical study


The purpose of this article is to evaluate arm measurements of breast cancer patients to critically assess absolute change in arm size compared to relative arm volume change as criteria for quantifying breast cancer-related lymphedema (BCRL). We used pre-operative measurements of 677 patients screened for BCRL before and following treatment of unilateral breast cancer at Massachusetts General Hospital between 2005 and 2008 to model the effect of an absolute change in arm size of 200 mL or 2 cm compared to relative arm volume change. We also used sequential measurements to analyze temporal variation in unaffected arm volume. Pre-operative arm volumes ranged from 1,270 to 6,873 mL and correlated strongly (Kendall’s τ = 0.55) with body mass index (BMI). An absolute arm volume change of 200 mL corresponded to relative arm volume changes ranging from 2.9 to 15.7 %. In a subset of 45 patients, modeling of a 2-cm change in arm circumference predicted relative arm volume changes ranging from 6.0 to 9.8 %. Sequential measurements of 124 patients with >6 measurements demonstrated remarkable temporal variation in unaffected arm volume (median within-patient change 10.5 %). The magnitude of such fluctuations correlated (τ = 0.36, P < 0.0001) with pre-operative arm volume, patient weight, and BMI when quantified as absolute volume change, but was independent of these variables when quantified as relative arm volume change (P > .05). Absolute changes in arm size used as criteria for BCRL are correlated with pre-operative and temporal changes in body size. Therefore, utilization of absolute volume or circumference change in clinical trials is flawed because specificity depends strongly on patient body size. Relative arm volume change is independent of body size and should thus be used as the standard criterion for diagnosis of BCRL.


Breast cancer-related lymphedema Quantification of lymphedema Arm swelling Quality of life 



The project described was supported by Award no. R01CA139118 (AGT) and Award no. P50CA089393 (AGT) from the National Cancer Institute. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Cancer Institute or the National Institutes of Health.

Conflicts of interest

The authors have no conflicts of interest to disclose.


  1. 1.
    Murdaca G, Cagnati P, Gulli R, Spano F, Puppo F, Campisi C, Boccardo F (2012) Current views on diagnostic approach and treatment of lymphedema. Am J Med 125(2):134–140. doi: 10.1016/j.amjmed.2011.06.032 PubMedCrossRefGoogle Scholar
  2. 2.
    Cormier JN, Xing Y, Zaniletti I, Askew RL, Stewart BR, Armer JM (2009) Minimal limb volume change has a significant impact on breast cancer survivors. Lymphology 42(4):161–175PubMedGoogle Scholar
  3. 3.
    Ahmed RL, Thomas W, Yee D, Schmitz KH (2006) Randomized controlled trial of weight training and lymphedema in breast cancer survivors. J Clin Oncol: Off J Am Soc Clin Oncol 24(18):2765–2772CrossRefGoogle Scholar
  4. 4.
    Armer JM (2005) The problem of post-breast cancer lymphedema: impact and measurement issues. Cancer Invest 23(1):76–83PubMedCrossRefGoogle Scholar
  5. 5.
    Smoot BJ, Wong JF, Dodd MJ (2011) Comparison of diagnostic accuracy of clinical measures of breast cancer-related lymphedema: area under the curve. Arch Phys Med Rehabil 92(4):603–610PubMedCrossRefGoogle Scholar
  6. 6.
    Ward L (2009) Is BIS ready for prime time as the gold standard measure? J Lymphoedema 4(2):52–56Google Scholar
  7. 7.
    Paskett ED (2008) Breast cancer-related lymphedema: attention to a significant problem resulting from cancer diagnosis. J Clin Oncol 26(35):5689–5696CrossRefGoogle Scholar
  8. 8.
    Clark B, Sitzia J, Harlow W (2005) Incidence and risk of arm oedema following treatment for breast cancer: a three-year follow-up study. QJM: Month J Assoc Phys 98(5):343–348Google Scholar
  9. 9.
    Hayes S, Janda M, Cornish B, Battistutta D, Newman B (2008) Lymphedema secondary to breast cancer: how choice of measure influences diagnosis, prevalence, and identifiable risk factors. Lymphology 41(1):18–28PubMedGoogle Scholar
  10. 10.
    International Society of Lymphology (2009) The diagnosis and treatment of peripheral lymphedema. 2009 Consensus document of the international society of lymphology. Lymphology 42:51–60Google Scholar
  11. 11.
    Armer JM, Stewart BR, Shook RP (2009) 30-Month post-breast cancer treatment lymphoedema. J Lymphoedema 4(1):14–18PubMedGoogle Scholar
  12. 12.
    Cormier JN, Askew RL, Mungovan KS, Xing Y, Ross MI, Armer JM (2010) Lymphedema beyond breast cancer: a systematic review and meta-analysis of cancer-related secondary lymphedema. Cancer 116(22):5138–5149. doi: 10.1002/cncr.25458 PubMedCrossRefGoogle Scholar
  13. 13.
    Armer JM, Stewart BR (2005) A comparison of four diagnostic criteria for lymphedema in a post-breast cancer population. Lymphat Res Biol 3(4):208–217PubMedCrossRefGoogle Scholar
  14. 14.
    Boccardo FM, Ansaldi F, Bellini C, Accogli S, Taddei G, Murdaca G, Campisi CC, Villa G, Icardi G, Durando P, Puppo F, Campisi C (2009) Prospective evaluation of a prevention protocol for lymphedema following surgery for breast cancer. Lymphology 42(1):1–9PubMedGoogle Scholar
  15. 15.
    Bar Ad V, Cheville A, Solin LJ, Dutta P, Both S, Harris EE (2010) Time course of mild arm lymphedema after breast conservation treatment for early-stage breast cancer. Int J Radiat Oncol Biol Phys 76(1):85–90PubMedCrossRefGoogle Scholar
  16. 16.
    Schunemann H, Willich N (1997) Lymphedema after breast carcinoma. A study of 5868 cases. Dtsch Med Wochenschr 122(17):536–541PubMedCrossRefGoogle Scholar
  17. 17.
    Coen JJ, Taghian AG, Kachnic LA, Assaad SI, Powell SN (2003) Risk of lymphedema after regional nodal irradiation with breast conservation therapy. Int J Radiat Oncol Biol Phys 55(5):1209–1215PubMedCrossRefGoogle Scholar
  18. 18.
    Herd-Smith A, Russo A, Muraca MG, Del Turco MR, Cardona G (2001) Prognostic factors for lymphedema after primary treatment of breast carcinoma. Cancer 92(7):1783–1787PubMedCrossRefGoogle Scholar
  19. 19.
    Wilke LG, McCall LM, Posther KE, Whitworth PW, Reintgen DS, Leitch AM, Gabram SG, Lucci A, Cox CE, Hunt KK, Herndon JE, Giuliano AE (2006) Surgical complications associated with sentinel lymph node biopsy: results from a prospective international cooperative group trial. Ann Surg Oncol 13(4):491–500PubMedCrossRefGoogle Scholar
  20. 20.
    Tsai RJ, Dennis LK, Lynch CF, Snetselaar LG, Zamba GK, Scott-Conner C (2009) The risk of developing arm lymphedema among breast cancer survivors: a meta-analysis of treatment factors. Ann Surg Oncol 16(7):1959–1972PubMedCrossRefGoogle Scholar
  21. 21.
    Edwards TL (2000) Prevalence and aetiology of lymphoedema after breast cancer treatment in southern Tasmania. Aust NZ J Surg 70(6):412–418CrossRefGoogle Scholar
  22. 22.
    Beaulac SM, McNair LA, Scott TE, LaMorte WW, Kavanah MT (2002) Lymphedema and quality of life in survivors of early-stage breast cancer. Arch Surg 137(11):1253–1257PubMedCrossRefGoogle Scholar
  23. 23.
    Stout Gergich NL, Pfalzer LA, McGarvey C, Springer B, Gerber LH, Soballe P (2008) Preoperative assessment enables the early diagnosis and successful treatment of lymphedema. Cancer 112(12):2809–2819PubMedCrossRefGoogle Scholar
  24. 24.
    Ancukiewicz M, Russell TA, Otoole J, Specht M, Singer M, Kelada A, Murphy CD, Pogachar J, Gioioso V, Patel M, Skolny M, Smith BL, Taghian AG (2011) Standardized method for quantification of developing lymphedema in patients treated for breast cancer. Int J Radiat Oncol Biol Phys 79(5):1436–1443PubMedCrossRefGoogle Scholar
  25. 25.
    Gerber LH (1998) A review of measures of lymphedema. Cancer 83(12 Suppl American):2803–2804PubMedCrossRefGoogle Scholar
  26. 26.
    Ward LC, Czerniec S, Kilbreath SL (2009) Operational equivalence of bioimpedance indices and perometry for the assessment of unilateral arm lymphedema. Lymphat Res Biol 7(2):81–85PubMedCrossRefGoogle Scholar
  27. 27.
    Rockson SG (2007) Bioimpedance analysis in the assessment of lymphoedema diagnosis and management. J Lymphoedema 2(1):44–48Google Scholar
  28. 28.
    Jain MS, Danoff JV, Paul SM (2010) Correlation between bioelectrical spectroscopy and perometry in assessment of upper extremity swelling. Lymphology 43(2):85–94PubMedGoogle Scholar
  29. 29.
    Czerniec SA, Ward LC, Refshauge KM, Beith J, Lee MJ, York S, Kilbreath SL (2010) Assessment of breast cancer-related arm lymphedema–comparison of physical measurement methods and self-report. Cancer Invest 28(1):54–62PubMedCrossRefGoogle Scholar
  30. 30.
    Cheville AL, McGarvey CL, Petrek JA, Russo SA, Thiadens SR, Taylor ME (2003) The grading of lymphedema in oncology clinical trials. Semin Radiat Oncol 13(3):214–225PubMedCrossRefGoogle Scholar
  31. 31.
    Schmitz KH, Ahmed RL, Troxel AB, Cheville A, Lewis-Grant L, Smith R, Bryan CJ, Williams-Smith CT, Chittams J (2010) Weight lifting for women at risk for breast cancer-related lymphedema: a randomized trial. JAMA 304(24):2699–2705PubMedCrossRefGoogle Scholar
  32. 32.
    Vignes S, Porcher R, Arrault M, Dupuy A (2007) Long-term management of breast cancer-related lymphedema after intensive decongestive physiotherapy. Breast Cancer Res Treat 101(3):285–290PubMedCrossRefGoogle Scholar
  33. 33.
    Devoogdt N, Van Kampen M, Geraerts I, Coremans T, Christiaens MR (2009) Different physical treatment modalities for lymphoedema developing after axillary lymph node dissection for breast cancer: a review. Eur J Obstet Gynecol Reprod Biol 149(1):3–9PubMedCrossRefGoogle Scholar
  34. 34.
    Kaya T, Karatepe AG, Gunaydn R, Yetis H, Uslu A (2010) Disability and health-related quality of life after breast cancer surgery: relation to impairments. South Med J 103(1):37–41. doi: 10.1097/SMJ.0b013e3181c38c41 PubMedCrossRefGoogle Scholar
  35. 35.
    Saaristo AM, Niemi TS, Viitanen TP, Tervala TV, Hartiala P, Suominen EA (2012) Microvascular breast reconstruction and lymph node transfer for postmastectomy lymphedema patients. Ann Surg 255(3):468–473. doi: 10.1097/SLA.0b013e3182426757 PubMedCrossRefGoogle Scholar
  36. 36.
    McLaughlin SA, Wright MJ, Morris KT, Giron GL, Sampson MR, Brockway JP, Hurley KE, Riedel ER, Van Zee KJ (2008) Prevalence of lymphedema in women with breast cancer 5 years after sentinel lymph node biopsy or axillary dissection: objective measurements. J Clin Oncol: Off J Am Soc Clin Oncol 26(32):5213–5219CrossRefGoogle Scholar
  37. 37.
    Lucci A, McCall LM, Beitsch PD, Whitworth PW, Reintgen DS, Blumencranz PW, Leitch AM, Saha S, Hunt KK, Giuliano AE (2007) Surgical complications associated with sentinel lymph node dissection (SLND) plus axillary lymph node dissection compared with SLND alone in the American College of Surgeons Oncology Group Trial Z0011. J Clin Oncol 25(24):3657–3663PubMedCrossRefGoogle Scholar
  38. 38.
    Devoogdt N, Christiaens MR, Geraerts I, Truijen S, Smeets A, Leunen K, Neven P, Van Kampen M (2011) Effect of manual lymph drainage in addition to guidelines and exercise therapy on arm lymphoedema related to breast cancer: randomised controlled trial. BMJ 343:d5326–d5326. doi: 10.1136/bmj.d5326 PubMedCrossRefGoogle Scholar
  39. 39.
    Kim do S, Sim YJ, Jeong HJ, Kim GC (2010) Effect of active resistive exercise on breast cancer-related lymphedema: a randomized controlled trial. Arch Phys Med Rehabil 91(12):1844–1848PubMedCrossRefGoogle Scholar
  40. 40.
    Omar MTA, Ebid A, El Morsy AM (2011) Treatment of post-mastectomy lymphedema with laser therapy: double blind placebo control randomized study. J Surg Res 165(1):82–90CrossRefGoogle Scholar
  41. 41.
    Kozanoglu E, Basaran S, Paydas S, Sarpel T (2009) Efficacy of pneumatic compression and low-level laser therapy in the treatment of postmastectomy lymphoedema: a randomized controlled trial. Clin Rehabil 23(2):117–124PubMedCrossRefGoogle Scholar
  42. 42.
    van der Veen P, De Voogdt N, Lievens P, Duquet W, Lamote J, Sacre R (2004) Lymphedema development following breast cancer surgery with full axillary resection. Lymphology 37(4):206–208PubMedGoogle Scholar
  43. 43.
    Goldberg JI, Wiechmann LI, Riedel ER, Morrow M, Van Zee KJ (2010) Morbidity of sentinel node biopsy in breast cancer: the relationship between the number of excised lymph nodes and lymphedema. Ann Surg Oncol 17(12):3278–3286PubMedCrossRefGoogle Scholar
  44. 44.
    Soran A, Wu WC, Dirican A, Johnson R, Andacoglu O, Wilson J (2010) Estimating the probability of lymphedema after breast cancer surgery. Am J Clin Oncol 34(5):506–510Google Scholar
  45. 45.
    Ashikaga T, Krag DN, Land SR, Julian TB, Anderson SJ, Brown AM, Skelly JM, Harlow SP, Weaver DL, Mamounas EP, Costantino JP, Wolmark N (2010) Morbidity results from the NSABP B-32 trial comparing sentinel lymph node dissection versus axillary dissection. J Surg Oncol 102(2):111–118PubMedCrossRefGoogle Scholar
  46. 46.
    Kosir MA, Rymal C, Koppolu P, Hryniuk L, Darga L, Du W, Rice V, Mood D, Shakoor S, Wang W, Bedoyan J, Aref A, Biernat L, Northouse L (2001) Surgical outcomes after breast cancer surgery: measuring acute lymphedema. J Surg Res 95(2):147–151PubMedCrossRefGoogle Scholar
  47. 47.
    Armer JM, Stewart BR (2010) Post-breast cancer lymphedema: incidence increases from 12 to 30 to 60 months. Lymphology 43(3):118–127PubMedGoogle Scholar
  48. 48.
    Smith MJ, Gill PG, Wetzig N, Sourjina T, Gebski V, Ung O, Campbell I, Kollias J, Coskinas X, Macphee A, Young L, Simes RJ, Stockler MR (2009) Comparing patients’ and clinicians’ assessment of outcomes in a randomised trial of sentinel node biopsy for breast cancer (the RACS SNAC trial). Breast Cancer Res Treat 117(1):99–109PubMedCrossRefGoogle Scholar
  49. 49.
    Mahamaneerat WK, Shyu CR, Stewart BR, Armer JM (2008) Breast cancer treatment, BMI, post-op swelling/lymphoedema. J Lymphoedema 3(2):38–44PubMedGoogle Scholar
  50. 50.
    Dayes IS, Levine MN, Julian JA, Pritchard KI, D’Souza DP, Kligman L, Reise D, Wiernikowski JA, Bonilla L, Whelan TJ (2008) Lymphedema in women with breast cancer: characteristics of patients screened for a randomized trial. Breast Cancer Res Treat 110(2):337–342PubMedCrossRefGoogle Scholar
  51. 51.
    Gebruers N, Truijen S, Engelborghs S, De Deyn PP (2007) Volumetric evaluation of upper extremities in 250 healthy persons. Clin Physiol Funct Imaging 27(1):17–22PubMedCrossRefGoogle Scholar
  52. 52.
    Chachaj A, Małyszczak K, Pyszel K, Lukas J, Tarkowski R, Pudełko M, Andrzejak R, Szuba A (2012) Physical and psychological impairments of women with upper limb lymphedema following breast cancer treatment. Psycho-Oncology 19(3):299–305. doi: 10.1002/pon.1573 CrossRefGoogle Scholar
  53. 53.
    Hollander M, Wolfe DA (1999) Nonparametric statistical methods. Wiley, New YorkGoogle Scholar
  54. 54.
    Helyer LK, Varnic M, Le LW, Leong W, McCready D (2010) Obesity is a risk factor for developing postoperative lymphedema in breast cancer patients. Breast J 16(1):48–54PubMedCrossRefGoogle Scholar
  55. 55.
    Bernas MjARL (2010) Lymphedema: how do we diagnose and reduce the risk of this dreaded complication of breast cancer treatment? Curr Breast Cancer Rep 2:53–58CrossRefGoogle Scholar
  56. 56.
    Lee TS, Kilbreath SL, Sullivan G et al (2009) Factors that affect intention to avoid strenuous arm activity after breast cancer surgery. Oncol Nurs Forum 36(4):454–462PubMedCrossRefGoogle Scholar
  57. 57.
    Kwan ML, Darbinian J, Schmitz KH, Citron R, Partee P, Kutner SE, Kushi LH (2010) Risk factors for lymphedema in a prospective breast cancer survivorship study: the pathways study. Arch Surg 145(11):1055–1063PubMedCrossRefGoogle Scholar
  58. 58.
    Yang EJ, Park WB, Seo KS et al (2010) Longitudinal change of treatment-related upper limb dysfunction and its impact on late dysfunction in breast cancer survivors: a prospective cohort study. J Surg Oncol 101(1):84–91PubMedCrossRefGoogle Scholar
  59. 59.
    Amer MS, Li J, O’Regan DJ, Steele DS, Porter KE, Sivaprasadarao A, Beech DJ (2009) Translocon closure to Ca2+ leak in proliferating vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 296(4):H910–H916. doi: 10.1152/ajpheart.00984.2008 PubMedCrossRefGoogle Scholar
  60. 60.
    Chachaj A, Malyszczak K, Pyszel K, Lukas J, Tarkowski R, Pudelko M, Andrzejak R, Szuba A (2010) Physical and psychological impairments of women with upper limb lymphedema following breast cancer treatment. Psychooncology 19(3):299–305PubMedCrossRefGoogle Scholar
  61. 61.
    Stout NL, Pfalzer LA, Levy E, McGarvey C, Springer B, Gerber LH, Soballe P (2011) Segmental limb volume change as a predictor of the onset of lymphedema in women with early breast cancer. PM & R: J Inj, Funct, Rehabil 3(12):1098–1105Google Scholar
  62. 62.
    Caudle AS, Hunt KK, Kuerer HM, Meric-Bernstam F, Lucci A, Bedrosian I, Babiera GV, Hwang RF, Ross MI, Feig BW, Hoffman K, Litton JK, Sahin AA, Yang W, Hortobagyi GN, Buchholz TA, Mittendorf EA (2011) Multidisciplinary considerations in the implementation of the findings from the American College of Surgeons Oncology Group (ACOSOG) Z0011 study: a practice-changing trial. Ann Surg Oncol 18(9):2407–2412PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  • Marek Ancukiewicz
    • 1
  • Cynthia L. Miller
    • 1
  • Melissa N. Skolny
    • 1
  • Jean O’Toole
    • 3
  • Laura E. Warren
    • 1
  • Lauren S. Jammallo
    • 1
  • Michelle C. Specht
    • 2
  • Alphonse G. Taghian
    • 1
    Email author
  1. 1.Department of Radiation OncologyMassachusetts General HospitalBostonUSA
  2. 2.Division of Surgical OncologyMassachusetts General HospitalBostonUSA
  3. 3.Department of Physical and Occupational TherapyMassachusetts General HospitalBostonUSA

Personalised recommendations