Advertisement

Breast Cancer Research and Treatment

, Volume 138, Issue 1, pp 109–118 | Cite as

Mammaglobin-A cDNA vaccination of breast cancer patients induces antigen-specific cytotoxic CD4+ICOShi T cells

  • Venkataswarup Tiriveedhi
  • Timothy P. Fleming
  • Peter S. Goedegebuure
  • Michael Naughton
  • Cynthia Ma
  • Craig Lockhart
  • Feng Gao
  • William E. Gillanders
  • T. MohanakumarEmail author
Clinical Trial

Abstract

Mammaglobin-A (Mam-A) is a 10 kDa secretory protein that is overexpressed in 80 % of primary and metastatic human breast cancers. Previous studies from our laboratory demonstrated that Mam-A cDNA vaccine can induce Mam-A-specific CD8 T cell responses and mediate regression of human breast cancer xenografts in NOD/SCID mice. In this article, we present our results on a phase I clinical trial of a Mam-A cDNA vaccination in breast cancer patients with stage-IV metastatic disease, including the impact of vaccination on the expression of the inducible co-stimulator molecule (ICOS) on CD4 T cells. Specimens from seven patients with stage-IV metastatic cancer were available for these analyses. Patients were vaccinated with a Mam-A cDNA vaccine on days 0, 28, and 56, and immune responses were assessed at serial time points following vaccination. At 6 months following the first vaccination, flow cytometric analysis demonstrated a significant increase in the frequency of CD4+ICOShi T cells from 5 ± 2 % pre-vaccination to 23 ± 4 % (p < 0.001), with a concomitant decrease in the frequency of CD4+FoxP3+ T cells (regulatory T cells [Treg]) from 19 ± 6 to 10 ± 5 % (p < 0.05). ELISpot analysis of CD4+ICOShi sorted T cells demonstrated that following vaccination the cytokines produced by Mam-A-specific T cells switched from IL-10 (78 ± 21 spm pre-vaccination to 32 ± 14 spm 5 months post-vaccine p < 0.001) to IFN-γ (12 ± 6 spm pre-vaccination to 124 ± 31 spm 5 months post-vaccine p < 0.001). The ratio of CD4+ICOShi T cells to CD4+FoxP3+ T cells increased from 0.37 ± 0.12 before vaccination to 2.3 ± 0.72 (p = 0.021) following vaccination. Further, these activated CD4+ICOShi T cells induced preferential lysis of human breast cancer cells expressing Mam-A protein. We conclude that Mam-A cDNA vaccination is associated with specific expansion and activation of CD4+ICOShi T cells, with a concomitant decrease in Treg frequency. These encouraging results strongly suggest that Mam-A cDNA vaccination can induce antitumor immunity in breast cancer patients.

Keywords

DNA vaccine Mammaglobin-A Breast cancer T cells ICOS 

Abbreviations

APCs

Antigen presenting cells

ICOS

Inducible co-stimulatory molecule

Mam-A

Mammaglobin-A

mAb

Monoclonal antibody

PBMCs

Peripheral blood mononuclear cells

Treg

Regulatory T cells

Notes

Acknowledgments

The authors would like to thank Ms. Billie Glasscock for her assistance in submitting this manuscript. This project was funded by DOD/CDMRP-BCRP W81XWH-06-1-0677 (WG). TM is funded by the BJC Foundation.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Watson MA, Fleming TP (1994) Isolation of differentially expressed sequence tags from human breast cancer. Cancer Res 54(17):4598–4602PubMedGoogle Scholar
  2. 2.
    Mikhitarian K, Gillanders WE, Almeida JS, Hebert Martin R, Varela JC, Metcalf JS, Cole DJ, Mitas M (2005) An innovative microarray strategy identities informative molecular markers for the detection of micrometastatic breast cancer. Clin Cancer Res 11(10):3697–3704PubMedCrossRefGoogle Scholar
  3. 3.
    Watson MA, Dintzis S, Darrow CM, Voss LE, DiPersio J, Jensen R, Fleming TP (1999) Mammaglobin expression in primary, metastatic, and occult breast cancer. Cancer Res 59(13):3028–3031PubMedGoogle Scholar
  4. 4.
    Fleming TP, Watson MA (2000) Mammaglobin, a breast-specific gene, and its utility as a marker for breast cancer. Ann N Y Acad Sci 923:78–89PubMedCrossRefGoogle Scholar
  5. 5.
    Goedegebuure PS, Watson MA, Viehl CT, Fleming TP (2004) Mammaglobin-based strategies for treatment of breast cancer. Curr Cancer Drug Targets 4(6):531–542PubMedCrossRefGoogle Scholar
  6. 6.
    Gillanders WE, Mikhitarian K, Hebert R, Mauldin PD, Palesch Y, Walters C, Urist MM, Mann GB, Doherty G, Herrmann VM, Hill AD, Eremin O, El-Sheemy M, Orr RK, Valle AA, Henderson MA, Dewitty RL, Sugg SL, Frykberg E, Yeh K, Bell RM, Metcalf JS, Elliott BM, Brothers T, Robison J, Mitas M, Cole DJ (2004) Molecular detection of micrometastatic breast cancer in histopathology-negative axillary lymph nodes correlates with traditional predictors of prognosis: an interim analysis of a prospective multi-institutional cohort study. Ann Surg 239(6):828–837 (discussion 837–840)PubMedCrossRefGoogle Scholar
  7. 7.
    Narayanan K, Jaramillo A, Benshoff ND, Campbell LG, Fleming TP, Dietz JR, Mohanakumar T (2004) Response of established human breast tumors to vaccination with mammaglobin-A cDNA. J Natl Cancer Inst 96(18):1388–1396PubMedCrossRefGoogle Scholar
  8. 8.
    van den Broek ME, Kagi D, Ossendorp F, Toes R, Vamvakas S, Lutz WK, Melief CJ, Zinkernagel RM, Hengartner H (1996) Decreased tumor surveillance in perforin-deficient mice. J Exp Med 184(5):1781–1790PubMedCrossRefGoogle Scholar
  9. 9.
    Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ, Schreiber RD (2001) IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410(6832):1107–1111PubMedCrossRefGoogle Scholar
  10. 10.
    Street SE, Hayakawa Y, Zhan Y, Lew AM, MacGregor D, Jamieson AM, Diefenbach A, Yagita H, Godfrey DI, Smyth MJ (2004) Innate immune surveillance of spontaneous B cell lymphomas by natural killer cells and gammadelta T cells. J Exp Med 199(6):879–884PubMedCrossRefGoogle Scholar
  11. 11.
    Robinson HL (1999) DNA vaccines: basic mechanism and immune responses (review). Int J Mol Med 4(5):549–555PubMedGoogle Scholar
  12. 12.
    Gurunathan S, Klinman DM, Seder RA (2000) DNA vaccines: immunology, application, and optimization*. Annu Rev Immunol 18:927–974PubMedCrossRefGoogle Scholar
  13. 13.
    Dong C, Juedes AE, Temann UA, Shresta S, Allison JP, Ruddle NH, Flavell RA (2001) ICOS co-stimulatory receptor is essential for T-cell activation and function. Nature 409(6816):97–101PubMedCrossRefGoogle Scholar
  14. 14.
    Yoshinaga SK, Whoriskey JS, Khare SD, Sarmiento U, Guo J, Horan T, Shih G, Zhang M, Coccia MA, Kohno T, Tafuri-Bladt A, Brankow D, Campbell P, Chang D, Chiu L, Dai T, Duncan G, Elliott GS, Hui A, McCabe SM, Scully S, Shahinian A, Shaklee CL, Van G, Mak TW, Senaldi G (1999) T-cell co-stimulation through B7RP-1 and ICOS. Nature 402(6763):827–832PubMedCrossRefGoogle Scholar
  15. 15.
    Coyle AJ, Lehar S, Lloyd C, Tian J, Delaney T, Manning S, Nguyen T, Burwell T, Schneider H, Gonzalo JA, Gosselin M, Owen LR, Rudd CE, Gutierrez-Ramos JC (2000) The CD28-related molecule ICOS is required for effective T cell-dependent immune responses. Immunity 13(1):95–105PubMedCrossRefGoogle Scholar
  16. 16.
    Miller AM, Lundberg K, Ozenci V, Banham AH, Hellstrom M, Egevad L, Pisa P (2006) CD4+CD25high T cells are enriched in the tumor and peripheral blood of prostate cancer patients. J Immunol 177(10):7398–7405PubMedGoogle Scholar
  17. 17.
    Chen H, Liakou CI, Kamat A, Pettaway C, Ward JF, Tang DN, Sun J, Jungbluth AA, Troncoso P, Logothetis C, Sharma P (2009) Anti-CTLA-4 therapy results in higher CD4+ICOShi T cell frequency and IFN-gamma levels in both nonmalignant and malignant prostate tissues. Proc Natl Acad Sci USA 106(8):2729–2734PubMedCrossRefGoogle Scholar
  18. 18.
    Bharat A, Benshoff N, Fleming TP, Dietz JR, Gillanders WE, Mohanakumar T (2008) Characterization of the role of CD8+ T cells in breast cancer immunity following mammaglobin-A DNA vaccination using HLA-class-I tetramers. Breast Cancer Res Treat 110(3):453–463PubMedCrossRefGoogle Scholar
  19. 19.
    Ilias Basha H, Tiriveedhi V, Fleming TP, Gillanders WE, Mohanakumar T (2011) Identification of immunodominant HLA-B7-restricted CD8+ cytotoxic T cell epitopes derived from mammaglobin-A expressed on human breast cancers. Breast Cancer Res Treat 127(1):81–89PubMedCrossRefGoogle Scholar
  20. 20.
    Jaramillo A, Majumder K, Manna PP, Fleming TP, Doherty G, Dipersio JF, Mohanakumar T (2002) Identification of HLA-A3-restricted CD8+ T cell epitopes derived from mammaglobin-A, a tumor-associated antigen of human breast cancer. Int J Cancer 102(5):499–506PubMedCrossRefGoogle Scholar
  21. 21.
    Jaramillo A, Narayanan K, Campbell LG, Benshoff ND, Lybarger L, Hansen TH, Fleming TP, Dietz JR, Mohanakumar T (2004) Recognition of HLA-A2-restricted mammaglobin-A-derived epitopes by CD8+ cytotoxic T lymphocytes from breast cancer patients. Breast Cancer Res Treat 88(1):29–41PubMedCrossRefGoogle Scholar
  22. 22.
    Bopp SK, Lettieri T (2008) Comparison of four different colorimetric and fluorometric cytotoxicity assays in a zebrafish liver cell line. BMC Pharmacol 8:8PubMedCrossRefGoogle Scholar
  23. 23.
    Curiel TJ (2007) Regulatory T-cell development: Is Foxp3 the decider? Nat Med 13(3):250–253PubMedCrossRefGoogle Scholar
  24. 24.
    Herman AE, Freeman GJ, Mathis D, Benoist C (2004) CD4+CD25+ T regulatory cells dependent on ICOS promote regulation of effector cells in the prediabetic lesion. J Exp Med 199(11):1479–1489PubMedCrossRefGoogle Scholar
  25. 25.
    Vocanson M, Rozieres A, Hennino A, Poyet G, Gaillard V, Renaudineau S, Achachi A, Benetiere J, Kaiserlian D, Dubois B, Nicolas JF (2010) Inducible costimulator (ICOS) is a marker for highly suppressive antigen-specific T cells sharing features of TH17/TH1 and regulatory T cells. J Allergy Clin Immunol 126(2):280–289, 289, e281–e287Google Scholar
  26. 26.
    Andersen MH, Schrama D, Thor Straten P, Becker JC (2006) Cytotoxic T cells. J Investig Dermatol 126(1):32–41PubMedCrossRefGoogle Scholar
  27. 27.
    Hutloff A, Dittrich AM, Beier KC, Eljaschewitsch B, Kraft R, Anagnostopoulos I, Kroczek RA (1999) ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature 397(6716):263–266PubMedCrossRefGoogle Scholar
  28. 28.
    McAdam AJ, Chang TT, Lumelsky AE, Greenfield EA, Boussiotis VA, Duke-Cohan JS, Chernova T, Malenkovich N, Jabs C, Kuchroo VK, Ling V, Collins M, Sharpe AH, Freeman GJ (2000) Mouse inducible costimulatory molecule (ICOS) expression is enhanced by CD28 costimulation and regulates differentiation of CD4+ T cells. J Immunol 165(9):5035–5040PubMedGoogle Scholar
  29. 29.
    Kopf M, Coyle AJ, Schmitz N, Barner M, Oxenius A, Gallimore A, Gutierrez-Ramos JC, Bachmann MF (2000) Inducible costimulator protein (ICOS) controls T helper cell subset polarization after virus and parasite infection. J Exp Med 192(1):53–61PubMedCrossRefGoogle Scholar
  30. 30.
    Liakou CI, Kamat A, Tang DN, Chen H, Sun J, Troncoso P, Logothetis C, Sharma P (2008) CTLA-4 blockade increases IFNgamma-producing CD4+ICOShi cells to shift the ratio of effector to regulatory T cells in cancer patients. Proc Natl Acad Sci USA 105(39):14987–14992PubMedCrossRefGoogle Scholar
  31. 31.
    Gurunathan S, Wu CY, Freidag BL, Seder RA (2000) DNA vaccines: a key for inducing long-term cellular immunity. Curr Opin Immunol 12(4):442–447PubMedCrossRefGoogle Scholar
  32. 32.
    Mahajan S, Cervera A, MacLeod M, Fillatreau S, Perona-Wright G, Meek S, Smith A, MacDonald A, Gray D (2007) The role of ICOS in the development of CD4 T cell help and the reactivation of memory T cells. Eur J Immunol 37(7):1796–1808PubMedCrossRefGoogle Scholar
  33. 33.
    Strauss L, Bergmann C, Szczepanski MJ, Lang S, Kirkwood JM, Whiteside TL (2008) Expression of ICOS on human melanoma-infiltrating CD4+CD25highFoxp3+ T regulatory cells: implications and impact on tumor-mediated immune suppression. J Immunol 180(5):2967–2980PubMedGoogle Scholar
  34. 34.
    Susskind B, Shornick MD, Iannotti MR, Duffy B, Mehrotra PT, Siegel JP, Mohanakumar T (1996) Cytolytic effector mechanisms of human CD4+ cytotoxic T lymphocytes. Hum Immunol 45(1):64–75PubMedCrossRefGoogle Scholar
  35. 35.
    Wan YY, Flavell RA (2009) How diverse—CD4 effector T cells and their functions. J Mol Cell Biol 1(1):20–36PubMedCrossRefGoogle Scholar
  36. 36.
    Aslan N, Yurdaydin C, Wiegand J, Greten T, Ciner A, Meyer MF, Heiken H, Kuhlmann B, Kaiser T, Bozkaya H, Tillmann HL, Bozdayi AM, Manns MP, Wedemeyer H (2006) Cytotoxic CD4 T cells in viral hepatitis. J Viral Hepat 13(8):505–514PubMedCrossRefGoogle Scholar
  37. 37.
    Quiroga MF, Pasquinelli V, Martinez GJ, Jurado JO, Zorrilla LC, Musella RM, Abbate E, Sieling PA, Garcia VE (2006) Inducible costimulator: a modulator of IFN-gamma production in human tuberculosis. J Immunol 176(10):5965–5974PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  • Venkataswarup Tiriveedhi
    • 1
  • Timothy P. Fleming
    • 1
  • Peter S. Goedegebuure
    • 1
  • Michael Naughton
    • 2
  • Cynthia Ma
    • 2
  • Craig Lockhart
    • 2
  • Feng Gao
    • 2
  • William E. Gillanders
    • 1
  • T. Mohanakumar
    • 1
    • 3
    Email author
  1. 1.Department of SurgeryWashington University School of MedicineSaint LouisUSA
  2. 2.Department of MedicineWashington University School of MedicineSaint LouisUSA
  3. 3.Department of Pathology and ImmunologyWashington University School of MedicineSaint LouisUSA

Personalised recommendations