Breast Cancer Research and Treatment

, Volume 134, Issue 3, pp 1103–1114

Hypomethylation of LINE-1 in primary tumor has poor prognosis in young breast cancer patients: a retrospective cohort study

  • Anneke Q. van Hoesel
  • Cornelis J. H. van de Velde
  • Peter J. K. Kuppen
  • Gerrit Jan Liefers
  • Hein Putter
  • Yusuke Sato
  • David A. Elashoff
  • Roderick R. Turner
  • Jaime M. Shamonki
  • Esther M. de Kruijf
  • Johanna G. H. van Nes
  • Armando E. Giuliano
  • Dave S. B. Hoon
Preclinical Study

Abstract

Long interspersed element 1 (LINE-1), a non-coding genomic repeat sequence, methylation status can influence tumor progression. In this study, the clinical significance of LINE-1 methylation status was assessed in primary breast cancer in young versus old breast cancer patients. LINE-1 methylation index (MI) was assessed by absolute quantitative assessment of methylated alleles (AQAMA) PCR assay. Initially, LINE-1 MI was assessed in a preliminary study of 235 tissues representing different stages of ductal breast cancer development. Next, an independent cohort of 379 primary ductal breast cancer patients (median follow-up 18.9 years) was studied. LINE-1 hypomethylation was shown to occur in DCIS and invasive breast cancer. In primary breast cancer it was associated with pathological tumor stage (p = 0.026), lymph node metastasis (p = 0.022), and higher age at diagnosis (>55, p < 0.001). In multivariate analysis, LINE-1 hypomethylation was associated with decreased OS (HR 2.19, 95 % CI 1.17–4.09, log-rank p = 0.014), DFS (HR 2.05, 95 % CI 1.14–3.67, log-rank p = 0.016) and increased DR (HR 2.83, 95 % CI 1.53–5.21, log-rank p = 0.001) in younger (≤55 years), but not older patients (>55 years). LINE-1 analysis of primary breast cancer demonstrated cancer-related age-dependent hypomethylation. In patients ≤55 years, LINE-1 hypomethylation portends a high-risk of DR.

Keywords

Age Breast cancer LINE-1 Methylation Prognosis 

Abbreviations

AQAMA

Absolute quantitative assessment of methylated alleles

ADH

Atypical ductal hyperplasia

BCS

Breast-conserving surgery

CT

Chemotherapy

DFS

Disease-free survival

DR

Distant recurrence

DCIS

Ductal carcinoma in situ

DH

Ductal hyperplasia

ET

Endocrine therapy

ER

Estrogen receptor

HR

Hazard ratio

HER2

Human epidermal growth factor receptor 2

LCM

Laser capture microdissection

LRR

Locoregional recurrence

LINE-1

Long interspersed element 1

MST

Mastectomy

M

Methylated

MI

Methylation index

OS

Overall survival

PEAT

Paraffin-embedded archival tissues

PgR

Progesterone receptor

RT

Radiotherapy

U

Unmethylated

References

  1. 1.
    Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55(2):74–108PubMedCrossRefGoogle Scholar
  2. 2.
    Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) (2005) Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365(9472):1687–1717CrossRefGoogle Scholar
  3. 3.
    Harris L, Fritsche H, Mennel R, Norton L, Ravdin P, Taube S, Somerfield MR, Hayes DF, Bast RC Jr (2007) American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol 25(33):5287–5312PubMedCrossRefGoogle Scholar
  4. 4.
    Herman JG, Baylin SB (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349(21):2042–2054PubMedCrossRefGoogle Scholar
  5. 5.
    Mulero-Navarro S, Esteller M (2008) Epigenetic biomarkers for human cancer: the time is now. Crit Rev Oncol Hematol 68(1):1–11PubMedCrossRefGoogle Scholar
  6. 6.
    Kristensen LS, Nielsen HM, Hansen LL (2009) Epigenetics and cancer treatment. Eur J Pharmacol 625(1–3):131–142PubMedCrossRefGoogle Scholar
  7. 7.
    Lane AA, Chabner BA (2009) Histone deacetylase inhibitors in cancer therapy. J Clin Oncol 27(32):5459–5468PubMedCrossRefGoogle Scholar
  8. 8.
    Sausville EA, Carducci MA (2005) Making bad cells go good: the promise of epigenetic therapy. J Clin Oncol 23(17):3875–3876PubMedCrossRefGoogle Scholar
  9. 9.
    Esteller M (2008) Epigenetics in cancer. N Engl J Med 358(11):1148–1159PubMedCrossRefGoogle Scholar
  10. 10.
    Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921PubMedCrossRefGoogle Scholar
  11. 11.
    St Laurent G 3rd, Hammell N, McCaffrey TA (2010) A LINE-1 component to human aging: do LINE elements exact a longevity cost for evolutionary advantage? Mech Ageing Dev 131(5):299–305PubMedCrossRefGoogle Scholar
  12. 12.
    Beck CR, Collier P, Macfarlane C, Malig M, Kidd JM, Eichler EE, Badge RM, Moran JV (2010) LINE-1 retrotransposition activity in human genomes. Cell 141(7):1159–1170PubMedCrossRefGoogle Scholar
  13. 13.
    Wolff EM, Byun HM, Han HF, Sharma S, Nichols PW, Siegmund KD, Yang AS, Jones PA, Liang G (2010) Hypomethylation of a LINE-1 promoter activates an alternate transcript of the MET oncogene in bladders with cancer. PLoS Genet 6(4):e1000917PubMedCrossRefGoogle Scholar
  14. 14.
    Baba Y, Huttenhower C, Nosho K, Tanaka N, Shima K, Hazra A, Schernhammer ES, Hunter DJ, Giovannucci EL, Fuchs CS et al (2010) Epigenomic diversity of colorectal cancer indicated by LINE-1 methylation in a database of 869 tumors. Mol Cancer 9:125PubMedCrossRefGoogle Scholar
  15. 15.
    Roman-Gomez J, Jimenez-Velasco A, Agirre X, Cervantes F, Sanchez J, Garate L, Barrios M, Castillejo JA, Navarro G, Colomer D et al (2005) Promoter hypomethylation of the LINE-1 retrotransposable elements activates sense/antisense transcription and marks the progression of chronic myeloid leukemia. Oncogene 24(48):7213–7223PubMedCrossRefGoogle Scholar
  16. 16.
    Saito K, Kawakami K, Matsumoto I, Oda M, Watanabe G, Minamoto T (2010) Long interspersed nuclear element 1 hypomethylation is a marker of poor prognosis in stage IA non-small cell lung cancer. Clin Cancer Res 16(8):2418–2426PubMedCrossRefGoogle Scholar
  17. 17.
    Allred DC, Mohsin SK (2000) Biological features of premalignant disease in the human breast. J Mammary Gland Biol Neoplasia 5(4):351–364PubMedCrossRefGoogle Scholar
  18. 18.
    Dupont WD, Page DL (1985) Risk factors for breast cancer in women with proliferative breast disease. N Engl J Med 312(3):146–151PubMedCrossRefGoogle Scholar
  19. 19.
    Hartmann LC, Sellers TA, Frost MH, Lingle WL, Degnim AC, Ghosh K, Vierkant RA, Maloney SD, Pankratz VS, Hillman DW et al (2005) Benign breast disease and the risk of breast cancer. N Engl J Med 353(3):229–237PubMedCrossRefGoogle Scholar
  20. 20.
    O’Connell P, Pekkel V, Fuqua SA, Osborne CK, Clark GM, Allred DC (1998) Analysis of loss of heterozygosity in 399 premalignant breast lesions at 15 genetic loci. J Natl Cancer Inst 90(9):697–703PubMedCrossRefGoogle Scholar
  21. 21.
    Maegawa S, Hinkal G, Kim HS, Shen L, Zhang L, Zhang J, Zhang N, Liang S, Donehower LA, Issa JP (2010) Widespread and tissue specific age-related DNA methylation changes in mice. Genome Res 20(3):332–340PubMedCrossRefGoogle Scholar
  22. 22.
    Teschendorff AE, Menon U, Gentry-Maharaj A, Ramus SJ, Weisenberger DJ, Shen H, Campan M, Noushmehr H, Bell CG, Maxwell AP et al (2010) Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome Res 20(4):440–446PubMedCrossRefGoogle Scholar
  23. 23.
    de Kruijf EM, van Nes JG, Sajet A, Tummers QR, Putter H, Osanto S, Speetjens FM, Smit VT, Liefers GJ, van de Velde CJ et al (2010) The predictive value of HLA class I tumor cell expression and presence of intratumoral Tregs for chemotherapy in patients with early breast cancer. Clin Cancer Res 16(4):1272–1280PubMedCrossRefGoogle Scholar
  24. 24.
    van Nes JG, de Kruijf EM, Faratian D, van de Velde CJ, Putter H, Falconer C, Smit VT, Kay C, van de Vijver MJ, Kuppen PJ et al (2011) COX2 expression in prognosis and in prediction to endocrine therapy in early breast cancer patients. Breast Cancer Res Treat 125(3): 671–685Google Scholar
  25. 25.
    Allred DC, Carlson RW, Berry DA, Burstein HJ, Edge SB, Goldstein LJ, Gown A, Hammond ME, Iglehart JD, Moench S et al (2009) NCCN Task Force report: estrogen receptor and progesterone receptor testing in breast cancer by immunohistochemistry. J Natl Compr Cancer Netw 7(Suppl 6): S1–S21 (quiz S22–23)Google Scholar
  26. 26.
    Wolff AC, Hammond ME, Schwartz JN, Hagerty KL, Allred DC, Cote RJ, Dowsett M, Fitzgibbons PL, Hanna WM, Langer A et al (2007) American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol 25(1):118–145PubMedCrossRefGoogle Scholar
  27. 27.
    Hayes DF, Ethier S, Lippman ME (2006) New guidelines for reporting of tumor marker studies in breast cancer research and treatment: remark. Breast Cancer Res Treat 100(2):237–238PubMedCrossRefGoogle Scholar
  28. 28.
    McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM (2005) Reporting recommendations for tumor marker prognostic studies. J Clin Oncol 23(36):9067–9072PubMedCrossRefGoogle Scholar
  29. 29.
    McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM (2006) REporting recommendations for tumor MARKer prognostic studies (REMARK). Breast Cancer Res Treat 100(2):229–235PubMedCrossRefGoogle Scholar
  30. 30.
    Sunami E, de Maat M, Vu A, Turner RR, Hoon DS (2011) LINE-1 hypomethylation during primary colon cancer progression. PLoS ONE 6(4):e18884PubMedCrossRefGoogle Scholar
  31. 31.
    de Maat MF, Umetani N, Sunami E, Turner RR, Hoon DS (2007) Assessment of methylation events during colorectal tumor progression by absolute quantitative analysis of methylated alleles. Mol Cancer Res 5(5):461–471PubMedCrossRefGoogle Scholar
  32. 32.
    Tanemura A, Terando AM, Sim MS, van Hoesel AQ, de Maat MF, Morton DL, Hoon DS (2009) CpG island methylator phenotype predicts progression of malignant melanoma. Clin Cancer Res 15(5):1801–1807PubMedCrossRefGoogle Scholar
  33. 33.
    Putter H, Fiocco M, Geskus RB (2007) Tutorial in biostatistics: competing risks and multi-state models. Stat Med 26(11):2389–2430PubMedCrossRefGoogle Scholar
  34. 34.
    Trichopoulos D, MacMahon B, Cole P (1972) Menopause and breast cancer risk. J Natl Cancer Inst 48(3):605–613PubMedGoogle Scholar
  35. 35.
    Lisabeth LD, Beiser AS, Brown DL, Murabito JM, Kelly-Hayes M, Wolf PA (2009) Age at natural menopause and risk of ischemic stroke: the Framingham heart study. Stroke 40(4):1044–1049PubMedCrossRefGoogle Scholar
  36. 36.
    Adami HO, Malker B, Holmberg L, Persson I, Stone B (1986) The relation between survival and age at diagnosis in breast cancer. N Engl J Med 315(9):559–563PubMedCrossRefGoogle Scholar
  37. 37.
    Early Breast Cancer Trialists’ Collaborative Group (1998) Tamoxifen for early breast cancer: an overview of the randomised trials. Lancet 351 (9114):1451–1467Google Scholar
  38. 38.
    Jatoi I, Chen BE, Anderson WF, Rosenberg PS (2007) Breast cancer mortality trends in the United States according to estrogen receptor status and age at diagnosis. J Clin Oncol 25(13):1683–1690PubMedCrossRefGoogle Scholar
  39. 39.
    Jemal A, Ward E, Thun MJ (2007) Recent trends in breast cancer incidence rates by age and tumor characteristics among U.S. women. Breast Cancer Res 9(3):R28PubMedCrossRefGoogle Scholar
  40. 40.
    Albain KS, Allred DC, Clark GM (1994) Breast cancer outcome and predictors of outcome: are there age differentials? J Natl Cancer Inst Monogr 16:35–42PubMedGoogle Scholar
  41. 41.
    Nixon AJ, Neuberg D, Hayes DF, Gelman R, Connolly JL, Schnitt S, Abner A, Recht A, Vicini F, Harris JR (1994) Relationship of patient age to pathologic features of the tumor and prognosis for patients with stage I or II breast cancer. J Clin Oncol 12(5):888–894PubMedGoogle Scholar
  42. 42.
    Bastiaannet E, Liefers GJ, de Craen AJ, Kuppen PJ, van de Water W, Portielje JE, van der Geest LG, Janssen-Heijnen ML, Dekkers OM, van de Velde CJ et al (2010) Breast cancer in elderly compared to younger patients in the Netherlands: stage at diagnosis, treatment and survival in 127,805 unselected patients. Breast Cancer Res Treat 124(3):801–807PubMedCrossRefGoogle Scholar
  43. 43.
    Giordano SH, Hortobagyi GN, Kau SW, Theriault RL, Bondy ML (2005) Breast cancer treatment guidelines in older women. J Clin Oncol 23(4):783–791PubMedCrossRefGoogle Scholar
  44. 44.
    Moinfar F (2007) Essentials of diagnostic breast pathology, vol XVI. Springer, HeidelbergGoogle Scholar
  45. 45.
    de Kruijf EM, Sajet A, van Nes JG, Putter H, Smit VT, Eagle RA, Jafferji I, Trowsdale J, Liefers GJ, van de Velde CJ et al (2012) NKG2D ligand tumor expression and association with clinical outcome in early breast cancer patients: an observational study. BMC Cancer 12(1):24PubMedCrossRefGoogle Scholar
  46. 46.
    Pattamadilok J, Huapai N, Rattanatanyong P, Vasurattana A, Triratanachat S, Tresukosol D, Mutirangura A (2008) LINE-1 hypomethylation level as a potential prognostic factor for epithelial ovarian cancer. Int J Gynecol Cancer 18(4):711–717PubMedCrossRefGoogle Scholar
  47. 47.
    Harris CR, Normart R, Yang Q, Stevenson E, Haffty BG, Ganesan S, Cordon-Cardo C, Levine AJ, Tang LH (2010) Association of nuclear localization of a long interspersed nuclear element-1 protein in breast tumors with poor prognostic outcomes. Genes Cancer 1(2):115–124PubMedCrossRefGoogle Scholar
  48. 48.
    Rockwood LD, Felix K, Janz S (2004) Elevated presence of retrotransposons at sites of DNA double strand break repair in mouse models of metabolic oxidative stress and MYC-induced lymphoma. Mutat Res 548(1–2):117–125PubMedGoogle Scholar
  49. 49.
    Igarashi S, Suzuki H, Niinuma T, Shimizu H, Nojima M, Iwaki H, Nobuoka T, Nishida T, Miyazaki Y, Takamaru H et al (2010) A novel correlation between LINE-1 hypomethylation and the malignancy of gastrointestinal stromal tumors. Clin Cancer Res 16(21):5114–5123PubMedCrossRefGoogle Scholar
  50. 50.
    Kazazian HH Jr, Goodier JL (2002) LINE drive: retrotransposition and genome instability. Cell 110(3):277–280PubMedCrossRefGoogle Scholar
  51. 51.
    Hagan CR, Rudin CM (2002) Mobile genetic element activation and genotoxic cancer therapy: potential clinical implications. Am J Pharmacogenomics 2(1):25–35PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  • Anneke Q. van Hoesel
    • 1
    • 2
  • Cornelis J. H. van de Velde
    • 2
  • Peter J. K. Kuppen
    • 2
  • Gerrit Jan Liefers
    • 2
  • Hein Putter
    • 3
  • Yusuke Sato
    • 1
  • David A. Elashoff
    • 4
  • Roderick R. Turner
    • 5
  • Jaime M. Shamonki
    • 5
  • Esther M. de Kruijf
    • 2
  • Johanna G. H. van Nes
    • 2
  • Armando E. Giuliano
    • 6
  • Dave S. B. Hoon
    • 1
  1. 1.Department of Molecular OncologyJohn Wayne Cancer Institute (JWCI) at St. John’s Health CenterSanta MonicaUSA
  2. 2.Department of SurgeryLeiden University Medical Center (LUMC)LeidenThe Netherlands
  3. 3.Department of Medical Statistics and BioinformaticsLeiden University Medical Center (LUMC)LeidenThe Netherlands
  4. 4.Department of Medicine, Statistics CoreUniversity of CaliforniaLos AngelesUSA
  5. 5.Department of PathologyJohn Wayne Cancer Institute (JWCI) at St. John’s Health CenterSanta MonicaUSA
  6. 6.Division of Surgical OncologyJohn Wayne Cancer Institute (JWCI) at St. John’s Health CenterSanta MonicaUSA

Personalised recommendations