Breast Cancer Research and Treatment

, Volume 133, Issue 2, pp 703–711 | Cite as

Effect of CYP3A4 inducer dexamethasone on hepatotoxicity of lapatinib: clinical and in vitro evidence

  • Yi Ling Teo
  • Manit Saetaew
  • Suthan Chanthawong
  • Yoon Sim Yap
  • Eric Chun Yong Chan
  • Han Kiat Ho
  • Alexandre ChanEmail author
Clinical Trial


Concomitant usage of lapatinib, a cytochrome P450 (CYP) 3A4 substrate and dexamethasone, a CYP3A4 inducer, is a pharmacokinetic drug–drug interaction. This combination may increase the formation of reactive lapatinib metabolites, which is potentially hepatotoxic. This study aims to evaluate the clinical effect of dexamethasone on incidence of hepatotoxicity and to ascertain its in vitro role using a parallel cell culture model experimental setup. Clinical effects of dexamethasone on lapatinib-induced hepatotoxicity were evaluated in a nested case–control study based on 120 patient data obtained from our records. For the in vitro experiment, metabolically competent transforming growth factor α mouse hepatocytes (TAMH) were treated with lapatinib and viabilities were compared in the presence or absence of dexamethasone. After adjusting for confounders, patients receiving the combination were 4.57 times (95% CI 1.23–16.88, p = 0.02) more likely to develop hepatotoxicity and 3.48 times (95% CI 1.24–9.80, p = 0.02) more likely to develop a clinically important change in alanine aminotransferase than compared to the other group. Treatment of TAMH cells with lapatinib and dexamethasone caused a further reduction in viability, as compared to treatment with lapatinib alone. At 5 μM lapatinib, the introduction of dexamethasone 20 μM produced a 59% decline in viability. This is the first study to document a clinically important interaction between lapatinib and dexamethasone, which associates with an increased occurrence of hepatotoxicity. The in vitro findings have provided substantiating evidence and insights on the role of dexamethasone in lapatinib-induced hepatotoxicity.


Cell viability CYP3A4 Dexamethasone Drug–drug interaction Hepatotoxicity Lapatinib 



The authors would like to dedicate this manuscript to Professor Emeritus Sidney Nelson for his mentorship and guidance in this study.

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Xia W, Mullin RJ, Keith BR, Liu LH, Ma H, Rusnak DW, Owens G, Alligood KJ, Spector NL (2002) Anti-tumor activity of GW572016: a dual tyrosine kinase inhibitor blocks EGF activation of EGFR/erbB2 and downstream Erk1/2 and AKT pathways. Oncogene 21:6255–6263. doi: 10.1038/sj.onc.1205794 PubMedCrossRefGoogle Scholar
  2. 2.
    Geyer CE, Forster J, Lindquist D, Chan S, Romieu CG, Pienkowski T, Jagiello-Gruszfeld A, Crown J, Chan A, Kaufman B, Skarlos D, Campone M, Davidson N, Berger M, Oliva C, Rubin SD, Stein S, Cameron D (2006) Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med 355:2733–2743. doi: 10.1056/NEJMoa064320 PubMedCrossRefGoogle Scholar
  3. 3.
    Johnston S, Pippen J Jr, Pivot X, Lichinitser M, Sadeghi S, Dieras V, Gomez HL, Romieu G, Manikhas A, Kennedy MJ, Press MF, Maltzman J, Florance A, O’Rourke L, Oliva C, Stein S, Pegram M (2009) Lapatinib combined with letrozole versus letrozole and placebo as first-line therapy for postmenopausal hormone receptor—positive metastatic breast cancer. J Clin Oncol 27:5538–5546. doi: 10.1200/JCO.2009.23.3734 PubMedCrossRefGoogle Scholar
  4. 4.
    Gomez HL, Doval DC, Chavez MA, Ang PCS, Aziz Z, Nag S, Ng C, Franco SX, Chow LWC, Arbushites MC, Casey MA, Berger MS, Stein SH, Sledge GW (2008) Efficacy and safety of lapatinib as first-line therapy for ErbB2-amplified locally advanced or metastatic breast cancer. J Clin Oncol 26:2999–3005. doi: 10.1200/JCO.2007.14.0590 PubMedCrossRefGoogle Scholar
  5. 5.
    Duckett DR, Cameron MD (2010) Metabolism considerations for kinase inhibitors in cancer treatment. Expert Opin Drug Metab Toxicol 6:1175–1193. doi: 10.1517/17425255.2010.506873 PubMedCrossRefGoogle Scholar
  6. 6.
    GlaxoSmithKline (ed) (2011) Tykerb Prescribing InformationGoogle Scholar
  7. 7.
    Teng WC, Oh JW, New LS, Wahlin MD, Nelson SD, Ho HK, Chan ECY (2010) Mechanism-based inactivation of cytochrome P450 3A4 by lapatinib. Mol Pharmacol 78:693–703. doi: 10.1124/mol.110.065839 PubMedCrossRefGoogle Scholar
  8. 8.
    Ju C, Uetrecht JP (2002) Mechanism of idiosyncratic drug reactions: reactive metabolites formation, protein binding and the regulation of the immune system. Curr Drug Metab 3:367–377. doi: 10.2174/1389200023337333 PubMedCrossRefGoogle Scholar
  9. 9.
    Brufsky AM, Mayer M, Rugo HS, Kaufman PA, Tan-Chiu E, Tripathy D, Tudor IC, Wang LI, Brammer MG, Shing M, Yood MU, Yardley DA (2011) Central nervous system metastases in patients with HER2-positive metastatic breast cancer: incidence, treatment, and survival in patients from registHER. Clin Cancer Res 17:4834–4843. doi: 10.1158/1078-0432.CCR-10-2962 PubMedCrossRefGoogle Scholar
  10. 10.
    Leyland-Jones B (2009) Human epidermal growth factor receptor 2-positive breast cancer and central nervous system metastases. J Clin Oncol 27:5278–5286. doi: 10.1200/JCO.2008.19.8481 PubMedCrossRefGoogle Scholar
  11. 11.
    Chang EL, Lo S (2003) Diagnosis and management of central nervous system metastases from breast cancer. Oncologist 8:398–410. doi: 10.1634/theoncologist.8-5-398 PubMedCrossRefGoogle Scholar
  12. 12.
    Ryken TC, McDermott M, Robinson PD, Ammirati M, Andrews DW, Asher AL, Burri SH, Cobbs CS, Gaspar LE, Kondziolka D, Linskey ME, Loeffler JS, Mehta MP, Mikkelsen T, Olson JJ, Paleologos NA, Patchell RA, Kalkanis SN (2010) The role of steroids in the management of brain metastases: a systematic review and evidence-based clinical practice guideline. J Neurooncol 96:103–114. doi: 10.1007/s11060-009-0057-4 PubMedCrossRefGoogle Scholar
  13. 13.
    Lin NU, Carey LA, Liu MC, Younger J, Come SE, Ewend M, Harris GJ, Bullitt E, Van Den Abbeele AD, Henson JW, Li X, Gelman R, Burstein HJ, Kasparian E, Kirsch DG, Crawford A, Hochberg F, Winer EP (2008) Phase II trial of lapatinib for brain metastases in patients with human epidermal growth factor receptor 2-positive breast cancer. J Clin Oncol 26:1993–1999. doi: 10.1200/JCO.2007.12.3588 PubMedCrossRefGoogle Scholar
  14. 14.
    Lin NU, Diéras V, Paul D, Lossignol D, Christodoulou C, Stemmler HJ, Roché H, Liu MC, Greil R, Ciruelos E, Loibl S, Gori S, Wardley A, Yardley D, Brufsky A, Blum JL, Rubin SD, Dharan B, Steplewski K, Zembryki D, Oliva C, Roychowdhury D, Paoletti P, Winer EP (2009) Multicenter phase II study of lapatinib in patients with brain metastases from HER2-positive breast cancer. Clin Cancer Res 15:1452–1459. doi: 10.1158/1078-0432.CCR-08-1080 PubMedCrossRefGoogle Scholar
  15. 15.
    Pascussi JM, Drocourt L, Fabre JM, Maurel P, Vilarem MJ (2000) Dexamethasone induces pregnane X receptor and retinoid X receptor-α expression in human hepatocytes: synergistic increase of CYP3A4 induction by pregnane X receptor activators. Mol Pharmacol 58:361–372PubMedGoogle Scholar
  16. 16.
    Micromedex® 2.0 (2011) Thomson Reuters (Healthcare). Accessed Oct 2011Google Scholar
  17. 17.
    Lexi-Comp (2011) Lexi-Comp Inc. Accessed Oct 2011Google Scholar
  18. 18.
    Navarro VJ, Senior JR (2006) Drug-related hepatotoxicity. N Engl J Med 354:731–739. doi: 10.1056/NEJMra052270 PubMedCrossRefGoogle Scholar
  19. 19.
    Wu JC, Merlino G, Cveklova K, Mosinger B Jr, Fausto N (1994) Autonomous growth in serum-free medium and production of hepatocellular carcinomas by differentiated hepatocyte lines that overexpress transforming growth factor α. Cancer Res 54:5964–5973PubMedGoogle Scholar
  20. 20.
    Martignoni M, De Kanter R, Grossi P, Saturno G, Barbaria E, Monshouwer M (2006) An in vivo and in vitro comparison of CYP gene induction in mice using liver slices and quantitative RT-PCR. Toxicol In Vitro 20:125–131. doi: 10.1016/j.tiv.2005.06.040 PubMedCrossRefGoogle Scholar
  21. 21.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63PubMedCrossRefGoogle Scholar
  22. 22.
    Sylvester PW (2011) Optimization of the tetrazolium dye (MTT) colorimetric assay for cellular growth and viability. Methods Mol Biol 716:157–168PubMedCrossRefGoogle Scholar
  23. 23.
    Vermeir M, Annaert P, Mamidi RNVS, Roymans D, Meuldermans W, Mannens G (2005) Cell-based models to study hepatic drug metabolism and enzyme induction in humans. Expert Opin Drug Metab Toxicol 1:75–90. doi: 10.1517/17425255.1.1.75 PubMedCrossRefGoogle Scholar
  24. 24.
    Pierce RH, Franklin CC, Campbell JS, Tonge RP, Chen W, Fausto N, Nelson SD, Bruschi SA (2002) Cell culture model for acetaminophen-induced hepatocyte death in vivo. Biochem Pharmacol 64:413–424. doi: 10.1016/S0006-2952(02)01180-2 PubMedCrossRefGoogle Scholar
  25. 25.
    Tomasello G, Bedard PL, de Azambuja E, Lossignol D, Devriendt D, Piccart-Gebhart MJ (2010) Brain metastases in HER2-positive breast cancer: the evolving role of lapatinib. Crit Rev Oncol Hematol 75:110–121. doi: 10.1016/j.critrevonc.2009.11.003 PubMedCrossRefGoogle Scholar
  26. 26.
    Zhou SF (2008) Drugs behave as substrates, inhibitors and inducers of human cytochrome P450 3A4. Curr Drug Metab 9:310–322. doi: 10.2174/138920008784220664 PubMedCrossRefGoogle Scholar
  27. 27.
    Srivastava A, Maggs JL, Antoine DJ, Williams DP, Smith DA, Park BK (2010) Role of reactive metabolites in drug-induced hepatotoxicity. In: Uetrecht J (ed) Adverse drug reactions, Handbook of experimental pharmacology, 1st edn. Springer-Verlag, Heidelberg, pp 165–194Google Scholar
  28. 28.
    Dahlin DC, Miwa GT, Lu AY, Nelson SD (1984) N-acetyl-p-benzoquinone imine: a cytochrome P-450-mediated oxidation product of acetaminophen. Proc Natl Acad Sci USA 81:1327–1331PubMedCrossRefGoogle Scholar
  29. 29.
    Guo GL, Moffit JS, Nicol CJ, Ward JM, Aleksunes LA, Slitt AL, Kliewer SA, Manautou JE, Gonzalez FJ (2004) Enhanced acetaminophen toxicity by activation of the pregnane X receptor. Toxicol Sci 82:374–380. doi: 10.1093/toxsci/kfh286 PubMedCrossRefGoogle Scholar
  30. 30.
    Blower P, De Wit R, Goodin S, Aapro M (2005) Drug-drug interactions in oncology: why are they important and can they be minimized? Crit Rev Oncol Hematol 55:117–142. doi: 10.1016/j.critrevonc.2005.03.007 PubMedCrossRefGoogle Scholar
  31. 31.
    Loriot Y, Perlemuter G, Malka D, Penault-Llorca F, Boige V, Deutsch E, Massard C, Armand JP, Soria JC (2008) Drug insight: gastrointestinal and hepatic adverse effects of molecular-targeted agents in cancer therapy. Nat Clin Pract Oncol 5:268–278. doi: 10.1038/ncponc1087 PubMedCrossRefGoogle Scholar
  32. 32.
    Asnacios A, Naveau S, Perlemuter G (2009) Gastrointestinal toxicities of novel agents in cancer therapy. Eur J Cancer 45:332–342. doi: 10.1016/S0959-8049(09)70047-4 PubMedCrossRefGoogle Scholar
  33. 33.
    Demirci U, Buyukberber S, Yılmaz G, Kerem M, Coskun U, Uner A, Baykara M, Pasali H, Benekli M (2011) Hepatotoxicity associated with lapatinib in an experimental rat model. Eur J Cancer 48(2):279–285. doi: 10.1016/j.ejca.2011.10.011 PubMedGoogle Scholar
  34. 34.
    Spraggs CF, Budde LR, Briley LP, Bing N, Cox CJ, King KS, Whittaker JC, Mooser VE, Preston AJ, Stein SH, Cardon LR (2011) HLA-DQA1*02:01 is a major risk factor for lapatinib-induced hepatotoxicity in women with advanced breast cancer. J Clin Oncol 29:667–673PubMedCrossRefGoogle Scholar
  35. 35.
    Andrade RJ, Camargo R, Lucena MI, González-Grande R (2004) Causality assessment in drug-induced hepatotoxicity. Expert Opin Drug Saf 3:329–344. doi: 10.1517/14740338.3.4.329 PubMedCrossRefGoogle Scholar
  36. 36.
    Senior JR (2009) Monitoring for hepatotoxicity: what is the predictive value of liver “function” tests? Clin Pharmacol Ther 85:331–334. doi: 10.1038/clpt.2008.262 PubMedCrossRefGoogle Scholar
  37. 37.
    Lee WM, Senior JR (2005) Recognizing drug-induced liver injury: current problems, possible solutions. Toxicol Pathol 33:155–164. doi: 10.1080/01926230590522356 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  • Yi Ling Teo
    • 1
  • Manit Saetaew
    • 2
  • Suthan Chanthawong
    • 3
  • Yoon Sim Yap
    • 4
  • Eric Chun Yong Chan
    • 1
  • Han Kiat Ho
    • 1
  • Alexandre Chan
    • 1
    • 5
    Email author
  1. 1.Department of Pharmacy, Faculty of ScienceNational University of SingaporeSingaporeSingapore
  2. 2.Department of Pharmacy Practice, Faculty of Pharmaceutical SciencesUbon Ratchathani UniversityUbon RatchathaniThailand
  3. 3.Clinical Pharmacy Division, Faculty of Pharmaceutical SciencesKhon Kaen UniversityKhon KaenThailand
  4. 4.Department of Medical OncologyNational Cancer Centre SingaporeSingaporeSingapore
  5. 5.Department of Oncology Pharmacy, National Cancer Centre SingaporeSingaporeSingapore

Personalised recommendations