Breast Cancer Research and Treatment

, Volume 133, Issue 2, pp 769–778

The single-nucleotide polymorphisms +936 C/T VEGF and −710 C/T VEGFR1 are associated with breast cancer protection in a Spanish population

  • Patricia Rodrigues
  • Jessica Furriol
  • Eduardo Tormo
  • Sandra Ballester
  • Ana Lluch
  • Pilar Eroles
Epidemiology

Abstract

Vascular endothelial growth factor (VEGF) is a potent regulator of angiogenesis and thereby involved in the development and progression of solid tumours. The association between polymorphisms of angiogenesis pathway genes and risk of breast cancer (BC) has been widely studied, but the results are not conclusive. This information is especially limited in Spanish women, so we decided to conduct a case–control study. Here, we selected four commonly studied polymorphisms in VEGF, rs3025039 (known as +936 C/T), rs1109324, rs154765 and rs833052, one polymorphism at the promoter of the VEGFR1 (−710 C/T) and another in the FGF2, rs1449683, gene to explore their association with BC susceptibility. Genotyping was performed by TaqMan SNP assays and polymerase chain reaction–restriction fragment length polymorphis (PCR-RFLP) on 453 patients and 461 controls in a population from Valencia (Spain). We observed that women carriers of +936 CT + TT VEGF genotypes have a protective effect concerning this disease (p = 0.014; OR 0.67, 95% CI 0.48–0.92) in the global group of patients. The haplotype TGAC of VEGF (rs3025039, rs1109324, rs154764 and rs833052) shows a reduction of the risk to develop BC (p = 3e−04; OR 0.48, 95% CI 0.32–0.72). Furthermore, we found that carriers of −710 CT + TT VEGFR1 genotypes have also a protective effect (p = 0.039; OR 0.55, 95% CI 0.31–0.98). When we stratified by groups of ages these associations were maintained. Our data report for the first time the association of the polymorphism −710 C/T VEGFR1 with BC. Additional experiments focused on VEGF-A, VEGFR1 and sVEGFR1 gene expression demonstrated that carriers of T allele at −710 C/T VEGFR1 genotype have higher levels of sVEGFR1/VEGF-A than the C/C genotype carriers. This was consistent with the hypothesis that this polymorphism may act as low penetrance risk factor. The data provided suggest that +936 C/T VEGF and −710 C/T VEGFR1 genotypes are likely important genetic markers of susceptibility to BC.

Keywords

Polymorphisms Breast cancer risk Vascular endothelial growth factor Case–control association study 

Abbreviations

BC

Breast cancer

BRCA1

Breast cancer 1

BRCA2

Breast cancer 2

CI

Confidence interval

ER

Estrogen receptor

FGF

Fibroblast growth factor

HWE

Hardy–Weinberg equilibrium

OR

Odds ratio

PCR–RFLP

Polymerase chain reaction–restriction fragment length polymorphism

SNP

Single nucleotide polymorphism

VEGF

Vascular endothelial growth factor

VEGFR1

Vascular endothelial growth factor receptor 1

sVEGFR1

Soluble vascular endothelial growth factor receptor 1

References

  1. 1.
    Smigal C, Jemal A, Ward E, Cokkinides V, Smith R, Howe HL, Thun M (2006) Trends in breast cancer by race and ethnicity: update 2006. CA Cancer J Clin 56:168–183PubMedCrossRefGoogle Scholar
  2. 2.
    Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127:2893–2917PubMedCrossRefGoogle Scholar
  3. 3.
    Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55:74–108PubMedCrossRefGoogle Scholar
  4. 4.
    Pollan M, Ramis R, Aragones N, Perez-Gomez B, Gomez D, Lope V, Garcia-Perez J, Carrasco JM, Garcia-Mendizabal MJ, Lopez-Abente G (2007) Municipal distribution of breast cancer mortality among women in Spain. BMC Cancer 7:78PubMedCrossRefGoogle Scholar
  5. 5.
    Easton DF, Ford D, Bishop DT (1995) Breast and ovarian cancer incidence in BRCA1-mutation carriers. Breast Cancer Linkage Consortium. Am J Hum Genet 56:265–271PubMedGoogle Scholar
  6. 6.
    Claus EB, Risch N, Thompson WD (1991) Genetic analysis of breast cancer in the cancer and steroid hormone study. Am J Hum Genet 48:232–242PubMedGoogle Scholar
  7. 7.
    Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, Pukkala E, Skytthe A, Hemminki K (2000) Environmental and heritable factors in the causation of cancer—analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 343:78–85PubMedCrossRefGoogle Scholar
  8. 8.
    Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676PubMedCrossRefGoogle Scholar
  9. 9.
    Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9:653–660PubMedCrossRefGoogle Scholar
  10. 10.
    Shibuya M, Claesson-Welsh L (2006) Signal transduction by VEGF receptors in regulation of angiogenesis and lymph angiogenesis. Exp Cell Res 312:549–560PubMedCrossRefGoogle Scholar
  11. 11.
    Murakami M, Nguyen LT, Zhuang ZW, Moodie KL, Carmeliet P, Stan RV, Simons M (2008) The FGF system has a key role in regulating vascular integrity. J Clin Invest 118:3355–3366PubMedCrossRefGoogle Scholar
  12. 12.
    Murakami M, Nguyen LT, Hatanaka K, Schachterle W, Chen PY, Zhuang ZW, Black BL, Simons M (2011) FGF-dependent regulation of VEGF receptor 2 expression in mice. J Clin Invest 121:2668–2678PubMedCrossRefGoogle Scholar
  13. 13.
    Uzzan B, Nicolas P, Cucherat M, Perret GY (2004) Microvessel density as a prognostic factor in women with breast cancer: a systematic review of the literature and meta-analysis. Cancer Res 64:2941–2955PubMedCrossRefGoogle Scholar
  14. 14.
    Linderholm B, Tavelin B, Grankvist K, Henriksson R (1998) Vascular endothelial growth factor is of high prognostic value in node-negative breast carcinoma. J Clin Oncol 16:3121–3128PubMedGoogle Scholar
  15. 15.
    Brogan IJ, Khan N, Isaac K, Hutchinson JA, Pravica V, Hutchinson IV (1999) Novel polymorphisms in the promoter and 5′ UTR regions of the human vascular endothelial growth factor gene. Hum Immunol 60:1245–1249PubMedCrossRefGoogle Scholar
  16. 16.
    Yoshiji H, Gomez DE, Shibuya M, Thorgeirsson UP (1996) Expression of vascular endothelial growth factor, its receptor, and other angiogenic factors in human breast cancer. Cancer Res 56:2013–2016PubMedGoogle Scholar
  17. 17.
    Tischer E, Mitchell R, Hartman T, Silva M, Gospodarowicz D, Fiddes JC, Abraham JA (1991) The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. J Biol Chem 266:11947–11954PubMedGoogle Scholar
  18. 18.
    Chae YS, Kim JG, Sohn SK, Cho YY, Moon JH, Bae HI, Park JY, Lee MH, Lee HC, Chung HY, Yu W (2006) Investigation of vascular endothelial growth factor gene polymorphisms and its association with clinicopathologic characteristics in gastric cancer. Oncology 71:266–272PubMedCrossRefGoogle Scholar
  19. 19.
    Lin GT, Tseng HF, Yang CH, Hou MF, Chuang LY, Tai HT, Tai MH, Cheng YH, Wen CH, Liu CS, Huang CJ, Wang CL, Chang HW (2009) Combinational polymorphisms of seven CXCL12-related genes are protective against breast cancer in Taiwan. OMICS 13:165–172PubMedCrossRefGoogle Scholar
  20. 20.
    Krippl P, Langsenlehner U, Renner W, Yazdani-Biuki B, Wolf G, Wascher TC, Paulweber B, Haas J, Samonigg H (2003) A common 936 C/T gene polymorphism of vascular endothelial growth factor is associated with decreased breast cancer risk. Int J Cancer 106:468–471PubMedCrossRefGoogle Scholar
  21. 21.
    Wang K, Liu L, Zhu ZM, Shao JH, Xin L (2011) Five polymorphisms of vascular endothelial growth factor (VEGF) and risk of breast cancer: a meta-analysis involving 16,703 individuals. Cytokine 56:167–173PubMedCrossRefGoogle Scholar
  22. 22.
    Jacobs EJ, Feigelson HS, Bain EB, Brady KA, Rodriguez C, Stevens VL, Patel AV, Thun MJ, Calle EE (2006) Polymorphisms in the vascular endothelial growth factor gene and breast cancer in the Cancer Prevention Study II cohort. Breast Cancer Res 8:R22PubMedCrossRefGoogle Scholar
  23. 23.
    Kataoka N, Cai Q, Wen W, Shu XO, Jin F, Gao YT, Zheng W (2006) Population-based case-control study of VEGF gene polymorphisms and breast cancer risk among Chinese women. Cancer Epidemiol Biomarkers Prev 15:1148–1152PubMedCrossRefGoogle Scholar
  24. 24.
    Jin Q, Hemminki K, Enquist K, Lenner P, Grzybowska E, Klaes R, Henriksson R, Chen B, Pamula J, Pekala W, Zientek H, Rogozinska-Szczepka J, Utracka-Hutka B, Hallmans G, Forsti A (2005) Vascular endothelial growth factor polymorphisms in relation to breast cancer development and prognosis. Clin Cancer Res 11:3647–3653PubMedCrossRefGoogle Scholar
  25. 25.
    Jakubowska A, Gronwald J, Menkiszak J, Gorski B, Huzarski T, Byrski T, Edler L, Lubinski J, Scott RJ, Hamann U (2008) The VEGF_936_C>T 3′UTR polymorphism reduces BRCA1-associated breast cancer risk in Polish women. Cancer Lett 262:71–76PubMedCrossRefGoogle Scholar
  26. 26.
    Menendez D, Krysiak O, Inga A, Krysiak B, Resnick MA, Schonfelder G (2006) A SNP in the flt-1 promoter integrates the VEGF system into the p53 transcriptional network. Proc Natl Acad Sci USA 103:1406–1411PubMedCrossRefGoogle Scholar
  27. 27.
    Ciribilli Y, Andreotti V, Menendez D, Langen JS, Schoenfelder G, Resnick MA, Inga A (2010) The coordinated p53 and estrogen receptor cis-regulation at an FLT1 promoter SNP is specific to genotoxic stress and estrogenic compound. PLoS One 5:e10236PubMedCrossRefGoogle Scholar
  28. 28.
    Kendall RL, Thomas KA (1993) Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc Natl Acad Sci USA 90:10705–10709PubMedCrossRefGoogle Scholar
  29. 29.
    Menendez D, Inga A, Snipe J, Krysiak O, Schonfelder G, Resnick MA (2007) A single-nucleotide polymorphism in a half-binding site creates p53 and estrogen receptor control of vascular endothelial growth factor receptor 1. Mol Cell Biol 27:2590–2600PubMedCrossRefGoogle Scholar
  30. 30.
    Kato M, Okugawa G, Wakeno M, Takekita Y, Nonen S, Tetsuo S, Nishida K, Azuma J, Kinoshita T, Serretti A (2009) Effect of basic fibroblast growth factor (FGF2) gene polymorphisms on SSRIs treatment response and side effects. Eur Neuropsychopharmacol 19:718–725PubMedCrossRefGoogle Scholar
  31. 31.
    Schulz S, Kohler K, Schagdarsurengin U, Greiser P, Birkenmeier G, Muller-Werdan U, Werdan K, Glaser C (2005) The human FGF2 level is influenced by genetic predisposition. Int J Cardiol 101:265–271PubMedCrossRefGoogle Scholar
  32. 32.
    Sole X, Guino E, Valls J, Iniesta R, Moreno V (2006) SNPStats: a web tool for the analysis of association studies. Bioinformatics 22:1928–1929PubMedCrossRefGoogle Scholar
  33. 33.
    Dumitrescu RG, Cotarla I (2005) Understanding breast cancer risk—where do we stand in 2005? J Cell Mol Med 9:208–221PubMedCrossRefGoogle Scholar
  34. 34.
    Carmeliet P (2005) VEGF as a key mediator of angiogenesis in cancer. Oncology 69(Suppl 3):4–10PubMedCrossRefGoogle Scholar
  35. 35.
    Roy H, Bhardwaj S, Yla-Herttuala S (2006) Biology of vascular endothelial growth factors. FEBS Lett 580:2879–2887PubMedCrossRefGoogle Scholar
  36. 36.
    Delli Carpini J, Karam AK, Montgomery L (2010) Vascular endothelial growth factor and its relationship to the prognosis and treatment of breast, ovarian, and cervical cancer. Angiogenesis 13:43–58PubMedCrossRefGoogle Scholar
  37. 37.
    Schneider BP, Radovich M, Sledge GW, Robarge JD, Li L, Storniolo AM, Lemler S, Nguyen AT, Hancock BA, Stout M, Skaar T, Flockhart DA (2008) Association of polymorphisms of angiogenesis genes with breast cancer. Breast Cancer Res Treat 111:157–163PubMedCrossRefGoogle Scholar
  38. 38.
    Hu YF, Luscher B, Admon A, Mermod N, Tjian R (1990) Transcription factor AP-4 contains multiple dimerization domains that regulate dimer specificity. Genes Dev 4:1741–1752PubMedCrossRefGoogle Scholar
  39. 39.
    Mermod N, Williams TJ, Tjian R (1988) Enhancer binding factors AP-4 and AP-1 act in concert to activate SV40 late transcription in vitro. Nature 332:557–561PubMedCrossRefGoogle Scholar
  40. 40.
    Renner W, Kotschan S, Hoffmann C, Obermayer-Pietsch B, Pilger E (2000) A common 936 C/T mutation in the gene for vascular endothelial growth factor is associated with vascular endothelial growth factor plasma levels. J Vasc Res 37:443–448PubMedCrossRefGoogle Scholar
  41. 41.
    Garcia-Closas M, Malats N, Real FX, Yeager M, Welch R, Silverman D, Kogevinas M, Dosemeci M, Figueroa J, Chatterjee N, Tardon A, Serra C, Carrato A, Garcia-Closas R, Murta-Nascimento C, Rothman N, Chanock SJ (2007) Large-scale evaluation of candidate genes identifies associations between VEGF polymorphisms and bladder cancer risk. PLoS Genet 3:e29PubMedCrossRefGoogle Scholar
  42. 42.
    Menendez D, Inga A, Resnick MA (2006) The biological impact of the human master regulator p53 can be altered by mutations that change the spectrum and expression of its target genes. Mol Cell Biol 26:2297–2308PubMedCrossRefGoogle Scholar
  43. 43.
    Shibuya M (2001) Structure and dual function of vascular endothelial growth factor receptor-1 (Flt-1). Int J Biochem Cell Biol 33:409–420PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  • Patricia Rodrigues
    • 1
  • Jessica Furriol
    • 1
  • Eduardo Tormo
    • 1
  • Sandra Ballester
    • 1
  • Ana Lluch
    • 1
    • 2
  • Pilar Eroles
    • 1
  1. 1.Fundación Investigación Hospital Clínico Universitario/INCLIVAValenciaSpain
  2. 2.Servicio de Hematología y Oncología MédicaHospital Clínico Universitario de ValenciaValenciaSpain

Personalised recommendations