Breast Cancer Research and Treatment

, Volume 132, Issue 2, pp 741–746 | Cite as

Genetic variants at chromosome 9p21, 10p15 and 10q22 and breast cancer susceptibility in a Chinese population

  • Jiaping Chen
  • Yue Jiang
  • Xiaoan Liu
  • Zhenzhen Qin
  • Juncheng Dai
  • Guangfu Jin
  • Hongxia Ma
  • Shui Wang
  • Xinru Wang
  • Zhibin Hu
  • Hongbing Shen
Epidemiology

Abstract

A recent genome-wide association study (GWAS) has identified a new subset of breast cancer susceptibility loci on chromosomes 9, 10, and 11 in populations of European descent. However, because of the genetic heterogeneity, the role of these loci in non-European descent populations is still unclear. To evaluate the relationships between genetic variants in these regions identified by GWAS and breast cancer risk in Chinese women, we genotyped four common SNPs at 9p21(rs1011970 and rs10757278), 10p15 (rs2380205), and 10q22 (rs1250009) in a two-stage case–control study with a total of 1792 breast cancer cases and 1,867 controls. We found that rs1250009 at 10q22 was consistently associated with risk of breast cancer in stage 1 and stage 2, with a per-allele OR of 1.13 (95% CI 1.02–1.25) after two stages combined (P = 0.023). However, no significant associations were observed between the other three SNPs and breast cancer risk. Our results suggest that the genetic variants at 10q22 may play an important role in breast cancer development in Chinese women, and rs1250009 may be a candidate marker for breast cancer susceptibility.

Keywords

Breast cancer Genome-wide association study 10q22 Polymorphisms Susceptibility 

Supplementary material

10549_2011_1927_MOESM1_ESM.doc (42 kb)
Supplementary material 1 (DOC 42 kb)

References

  1. 1.
    Ferlay J, Shin HR, Bray F et al (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127:2893–2917PubMedCrossRefGoogle Scholar
  2. 2.
    Coughlin SS, Ekwueme DU (2009) Breast cancer as a global health concern. Cancer Epidemiol 33:315–318PubMedCrossRefGoogle Scholar
  3. 3.
    Porter P (2008) ‘‘Westernizing’’ women’s risks? Breast cancer in lower-income countries. N Engl J Med 358:213–216PubMedCrossRefGoogle Scholar
  4. 4.
    Lichtenstein P, Holm NV, Verkasalo PK et al (2000) Environmental and heritable factors in the causation of cancer–analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 343:78–85PubMedCrossRefGoogle Scholar
  5. 5.
    Chen YC, Hunter DJ (2005) Molecular epidemiology of cancer. CA Cancer J Clin 55:45–54PubMedCrossRefGoogle Scholar
  6. 6.
    Easton DF, Pooley KA, Dunning AM et al (2007) Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447:1087–1093PubMedCrossRefGoogle Scholar
  7. 7.
    Stacey SN, Manolescu A, Sulem P et al (2007) Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor-positive breast cancer. Nat Genet 39:865–869PubMedCrossRefGoogle Scholar
  8. 8.
    Hunter DJ, Kraft P, Jacobs KB et al (2007) A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat Genet 39:870–874PubMedCrossRefGoogle Scholar
  9. 9.
    Stacey SN, Manolescu A, Sulem P et al (2008) Common variants on chromosome 5p12 confer susceptibility to estrogen receptor-positive breast cancer. Nat Genet 40:703–706PubMedCrossRefGoogle Scholar
  10. 10.
    Thomas G, Jacobs KB, Kraft P et al (2009) A multistage genome-wide association study in breast cancer identifies two new risk alleles at 1p11.2 and14q24.1 (RAD51L1). Nat Genet 41:579–584PubMedCrossRefGoogle Scholar
  11. 11.
    Ahmed S, Thomas G, Ghoussaini M et al (2009) Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2. Nat Genet 41:585–590PubMedCrossRefGoogle Scholar
  12. 12.
    Zheng W, Long J, Gao YT et al (2009) Genome-wide association study identifies a new breast cancer susceptibility locus at 6q25.1. Nat Genet 41:324–328PubMedCrossRefGoogle Scholar
  13. 13.
    Turnbull C, Shahana A, Morrison J et al (2010) Genome-wide association study identifies five new breast cancer susceptibility loci. Nat Genet 42:504–507PubMedCrossRefGoogle Scholar
  14. 14.
    Bishop DT, Demenais F, Iles MM et al (2009) Genome-wide association study identifies three loci associated with melanoma risk. Nat Genet 41:920–925PubMedCrossRefGoogle Scholar
  15. 15.
    Stacey SN, Sulem P, Masson G et al (2009) New common variants affecting susceptibility to basal cell carcinoma. Nat Genet 41:909–914PubMedCrossRefGoogle Scholar
  16. 16.
    Shete S, Hosking FJ, Robertson LB et al (2009) Genome-wide association study identifies five susceptibility loci for glioma. Nat Genet 41:899–904PubMedCrossRefGoogle Scholar
  17. 17.
    Zeggini E, Weedon MN, Lindgren CM et al (2007) Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316:1336–1341PubMedCrossRefGoogle Scholar
  18. 18.
    Helgadottir A, Thorleifsson G, Manolescu A et al (2007) A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science 316:1491–1493PubMedCrossRefGoogle Scholar
  19. 19.
    Sharma M, Li X, Wang Y et al (2003) hZimp10 is an androgen receptor co-activator and forms a complex with SUMO-1 at replication foci. EMBO J 22:6101–6114PubMedCrossRefGoogle Scholar
  20. 20.
    Li X, Thyssen G, Beliakoff J et al (2006) The novel PIAS-like protein hZimp10 enhances Smad transcriptional activity. J Biol Chem 281:23748–23756PubMedCrossRefGoogle Scholar
  21. 21.
    Lee J, Beliakoff J, Sun Z (2007) The novel PIAS-like protein hZimp10 is a transcriptional co-activator of the p53 tumor suppressor. Nucleic Acids Res 35:4523–4534PubMedCrossRefGoogle Scholar
  22. 22.
    Karlseder J, Zeillinger R, Schneeberger C et al (1994) Patterns of DNA amplification at band q13 of chromosome 11 in human breast cancer. Genes Chromosome Cancer 9:42–48CrossRefGoogle Scholar
  23. 23.
    Liu Y, Sanoff HK, Cho H et al (2009) INK4/ARF transcript expression is associated with chromosome 9p21 variants linked to atherosclerosis. PLoS One 4:e5027PubMedCrossRefGoogle Scholar
  24. 24.
    Jiang Y, Shen H, Liu X et al (2011) Genetic variants at 1p11.2 and breast cancer risk: a two-stage study in Chinese women. PLoS One 6:e21563PubMedCrossRefGoogle Scholar
  25. 25.
    Chen F, Chen GK, Millikan RC et al (2011) Fine-mapping of breast cancer susceptibility loci characterizes genetic risk in African Americans. Hum Mol Genet 20:4491–4503PubMedCrossRefGoogle Scholar
  26. 26.
    Hutter CM, Young AM, Ochs-Balcom HM et al (2011) Replication of breast cancer GWAS susceptibility loci in the women’s health initiative African American SHARe study. Cancer Epidemiol Biomarkers Prev 20:1950–1959PubMedCrossRefGoogle Scholar
  27. 27.
    Beliakoff J, Lee J, Ueno H et al (2008) The PIAS-like protein Zimp10 is essential for embryonic viability and proper vascular development. Mol Cell Biol 28:282–292PubMedCrossRefGoogle Scholar
  28. 28.
    Cartegni L, Wang J, Zhu Z et al (2003) ESEfinder: a web resource to identify exonic splicing enhancers. Nucleic Acids Res 31:3568–3571PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Jiaping Chen
    • 1
    • 3
  • Yue Jiang
    • 1
    • 2
    • 3
  • Xiaoan Liu
    • 4
  • Zhenzhen Qin
    • 1
  • Juncheng Dai
    • 1
  • Guangfu Jin
    • 1
    • 2
    • 3
  • Hongxia Ma
    • 1
    • 2
  • Shui Wang
    • 4
  • Xinru Wang
    • 1
    • 2
  • Zhibin Hu
    • 1
    • 2
    • 3
  • Hongbing Shen
    • 1
    • 2
    • 3
  1. 1.MOE Key Laboratory of Modern Toxicology, School of Public HealthNanjing Medical UniversityNanjingChina
  2. 2.State Key Laboratory of Reproductive Medicine, Institute of ToxicologyNanjing Medical UniversityNanjingChina
  3. 3.Section of Clinical Epidemiology, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer CenterNanjing Medical UniversityNanjingChina
  4. 4.Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina

Personalised recommendations