Breast Cancer Research and Treatment

, Volume 132, Issue 2, pp 711–721 | Cite as

A genetic risk predictor for breast cancer using a combination of low-penetrance polymorphisms in a Japanese population

  • Aiko Sueta
  • Hidemi Ito
  • Takakazu Kawase
  • Kaoru Hirose
  • Satoyo Hosono
  • Yasushi Yatabe
  • Kazuo Tajima
  • Hideo Tanaka
  • Hiroji Iwata
  • Hirotaka Iwase
  • Keitaro Matsuo
Epidemiology

Abstract

Genome-wide association studies (GWASs) have identified genetic variants associated with breast cancer. Most GWASs to date have been conducted in women of European descent, however, and the contribution of these variants as predictors in Japanese women is unknown. Here, we analyzed 23 genetic variants identified in previous GWASs and conducted a case–control study with 697 case subjects and 1,394 age- and menopausal status-matched controls. We fit conditional regression models with genetic variants and conventional risk factors. In addition, we created a polygenetic risk score, using those variants with a statistically significant association with breast cancer risk, and also evaluated the contribution of these genetic predictors using the c statistic. Eleven single-nucleotide polymorphisms (SNPs) revealed significant associations with breast cancer risk. A dose-dependent association was observed between the risk of breast cancer and the genetic risk score, which was an aggregate measure of alleles in seven selected variants, namely FGFR2-rs2981579, TOX3/TNRC9-rs3803662, C6orf97-rs2046210, 8q24-rs13281615, SLC4A7-rs4973768, LSP1-rs38137198, and CASP8-rs10931936. Compared to women with scores of 3 or less, odds ratios (ORs) for women with scores of 4–5, 6–7, 8–9, and 10 or more were 1.33 (95% confidence interval, 1.00–1.80), 1.71 (1.26–2.30), 3.01 (1.97–4.58), and 8.69 (2.75–27.5), respectively (Ptrend = 1.9 × 10−9). The c statistic for a model including the genetic risk score in addition to the conventional risk factors was 0.6933, versus 0.6652 with the conventional risk factors only (P = 1.3 × 10−4). Population-attributable fraction of the risk score was 33.0%. In conclusion, we identified a genetic risk predictor of breast cancer in a Japanese population. Risk models which include a genetic risk score are possibly useful in distinguishing women at high risk of breast cancer from those at low risk, particularly in the context of targeted prevention.

Keywords

Breast cancer Genetic variants Risk prediction 

Abbreviations

GWAS

Genome-wide association studies

SNP

Single-nucleotide polymorphism

ACCH

Aichi Cancer Center Hospital

HERPACC

Hospital-based Epidemiologic Research Program at Aichi Cancer Center

HWE

Hardy–Weinberg equilibrium

LD

Linkage disequilibrium

ROC

Receiver-operating characteristic curve

AUC

Area under the receiver operator characteristic curve

PAF

Population-attributable fraction

OR

Odds ratio

95%CI

95% confidence interval

ER

Estrogen receptor

PR

Progesterone receptor

BMI

Body mass index

Supplementary material

10549_2011_1904_MOESM1_ESM.xls (30 kb)
Supplementary material 1 (XLS 29 kb)

References

  1. 1.
    Matsuda T, Marugame T, Kamo K, Katanoda K, Ajiki W, Sobue T (2011) Cancer incidence and incidence rates in Japan in 2005: based on data from 12 population-based cancer registries in the Monitoring of Cancer Incidence in Japan (MCIJ) project. Jpn J Clin Oncol 41(1):139–147. doi:10.1093/jjco/hyq169 PubMedCrossRefGoogle Scholar
  2. 2.
    Forouzanfar MH, Foreman KJ, Delossantos AM, Lozano R, Lopez AD, Murray CJ, Naghavi M (2011) Breast and cervical cancer in 187 countries between 1980 and 2010: a systematic analysis. Lancet 378:1461–1484. doi:10.1016/S0140-6736(11)61351-2 PubMedCrossRefGoogle Scholar
  3. 3.
    Song M, Lee KM, Kang D (2010) Breast cancer prevention based on gene–environment interaction. Mol Carcinog 50(4):280–290. doi:10.1002/mc.20639 PubMedCrossRefGoogle Scholar
  4. 4.
    Barnholtz-Sloan JS, Shetty PB, Guan X, Nyante SJ, Luo J, Brennan DJ, Millikan RC (2010) FGFR2 and other loci identified in genome-wide association studies are associated with breast cancer in African-American and younger women. Carcinogenesis 31(8):1417–1423. doi:10.1093/carcin/bgq128 PubMedCrossRefGoogle Scholar
  5. 5.
    Turnbull C, Ahmed S, Morrison J, Pernet D, Renwick A, Maranian M, Seal S, Ghoussaini M, Hines S, Healey CS, Hughes D, Warren-Perry M, Tapper W, Eccles D, Evans DG, Hooning M, Schutte M, van den Ouweland A, Houlston R, Ross G, Langford C, Pharoah PD, Stratton MR, Dunning AM, Rahman N, Easton DF (2010) Genome-wide association study identifies five new breast cancer susceptibility loci. Nat Genet 42(6):504–507. doi:10.1038/ng.586 PubMedCrossRefGoogle Scholar
  6. 6.
    Hunter DJ, Kraft P, Jacobs KB, Cox DG, Yeager M, Hankinson SE, Wacholder S, Wang Z, Welch R, Hutchinson A, Wang J, Yu K, Chatterjee N, Orr N, Willett WC, Colditz GA, Ziegler RG, Berg CD, Buys SS, McCarty CA, Feigelson HS, Calle EE, Thun MJ, Hayes RB, Tucker M, Gerhard DS, Fraumeni JF Jr, Hoover RN, Thomas G, Chanock SJ (2007) A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat Genet 39(7):870–874. doi:10.1038/ng2075 PubMedCrossRefGoogle Scholar
  7. 7.
    Easton DF, Pooley KA, Dunning AM, Pharoah PD, Thompson D, Ballinger DG, Struewing JP, Morrison J, Field H, Luben R, Wareham N, Ahmed S, Healey CS, Bowman R, Meyer KB, Haiman CA, Kolonel LK, Henderson BE, Le Marchand L, Brennan P, Sangrajrang S, Gaborieau V, Odefrey F, Shen CY, Wu PE, Wang HC, Eccles D, Evans DG, Peto J, Fletcher O, Johnson N, Seal S, Stratton MR, Rahman N, Chenevix-Trench G, Bojesen SE, Nordestgaard BG, Axelsson CK, Garcia-Closas M, Brinton L, Chanock S, Lissowska J, Peplonska B, Nevanlinna H, Fagerholm R, Eerola H, Kang D, Yoo KY, Noh DY, Ahn SH, Hunter DJ, Hankinson SE, Cox DG, Hall P, Wedren S, Liu J, Low YL, Bogdanova N, Schurmann P, Dork T, Tollenaar RA, Jacobi CE, Devilee P, Klijn JG, Sigurdson AJ, Doody MM, Alexander BH, Zhang J, Cox A, Brock IW, MacPherson G, Reed MW, Couch FJ, Goode EL, Olson JE, Meijers-Heijboer H, van den Ouweland A, Uitterlinden A, Rivadeneira F, Milne RL, Ribas G, Gonzalez-Neira A, Benitez J, Hopper JL, McCredie M, Southey M, Giles GG, Schroen C, Justenhoven C, Brauch H, Hamann U, Ko YD, Spurdle AB, Beesley J, Chen X, Mannermaa A, Kosma VM, Kataja V, Hartikainen J, Day NE, Cox DR, Ponder BA (2007) Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447(7148):1087–1093. doi:10.1038/nature05887 PubMedCrossRefGoogle Scholar
  8. 8.
    Long J, Cai Q, Shu XO, Qu S, Li C, Zheng Y, Gu K, Wang W, Xiang YB, Cheng J, Chen K, Zhang L, Zheng H, Shen CY, Huang CS, Hou MF, Shen H, Hu Z, Wang F, Deming SL, Kelley MC, Shrubsole MJ, Khoo US, Chan KY, Chan SY, Haiman CA, Henderson BE, Le Marchand L, Iwasaki M, Kasuga Y, Tsugane S, Matsuo K, Tajima K, Iwata H, Huang B, Shi J, Li G, Wen W, Gao YT, Lu W, Zheng W (2010) Identification of a functional genetic variant at 16q12.1 for breast cancer risk: results from the Asia Breast Cancer Consortium. PLoS Genet 6(6):e1001002. doi:10.1371/journal.pgen.1001002 PubMedCrossRefGoogle Scholar
  9. 9.
    Stacey SN, Manolescu A, Sulem P, Thorlacius S, Gudjonsson SA, Jonsson GF, Jakobsdottir M, Bergthorsson JT, Gudmundsson J, Aben KK, Strobbe LJ, Swinkels DW, van Engelenburg KC, Henderson BE, Kolonel LN, Le Marchand L, Millastre E, Andres R, Saez B, Lambea J, Godino J, Polo E, Tres A, Picelli S, Rantala J, Margolin S, Jonsson T, Sigurdsson H, Jonsdottir T, Hrafnkelsson J, Johannsson J, Sveinsson T, Myrdal G, Grimsson HN, Sveinsdottir SG, Alexiusdottir K, Saemundsdottir J, Sigurdsson A, Kostic J, Gudmundsson L, Kristjansson K, Masson G, Fackenthal JD, Adebamowo C, Ogundiran T, Olopade OI, Haiman CA, Lindblom A, Mayordomo JI, Kiemeney LA, Gulcher JR, Rafnar T, Thorsteinsdottir U, Johannsson OT, Kong A, Stefansson K (2008) Common variants on chromosome 5p12 confer susceptibility to estrogen receptor-positive breast cancer. Nat Genet 40(6):703–706. doi:10.1038/ng.131 PubMedCrossRefGoogle Scholar
  10. 10.
    Zheng W, Long J, Gao YT, Li C, Zheng Y, Xiang YB, Wen W, Levy S, Deming SL, Haines JL, Gu K, Fair AM, Cai Q, Lu W, Shu XO (2009) Genome-wide association study identifies a new breast cancer susceptibility locus at 6q25.1. Nat Genet 41(3):324–328. doi:10.1038/ng.318 PubMedCrossRefGoogle Scholar
  11. 11.
    Gold B, Kirchhoff T, Stefanov S, Lautenberger J, Viale A, Garber J, Friedman E, Narod S, Olshen AB, Gregersen P, Kosarin K, Olsh A, Bergeron J, Ellis NA, Klein RJ, Clark AG, Norton L, Dean M, Boyd J, Offit K (2008) Genome-wide association study provides evidence for a breast cancer risk locus at 6q22.33. Proc Natl Acad Sci USA 105(11):4340–4345. doi:10.1073/pnas.0800441105 PubMedCrossRefGoogle Scholar
  12. 12.
    Stacey SN, Manolescu A, Sulem P, Rafnar T, Gudmundsson J, Gudjonsson SA, Masson G, Jakobsdottir M, Thorlacius S, Helgason A, Aben KK, Strobbe LJ, Albers-Akkers MT, Swinkels DW, Henderson BE, Kolonel LN, Le Marchand L, Millastre E, Andres R, Godino J, Garcia-Prats MD, Polo E, Tres A, Mouy M, Saemundsdottir J, Backman VM, Gudmundsson L, Kristjansson K, Bergthorsson JT, Kostic J, Frigge ML, Geller F, Gudbjartsson D, Sigurdsson H, Jonsdottir T, Hrafnkelsson J, Johannsson J, Sveinsson T, Myrdal G, Grimsson HN, Jonsson T, von Holst S, Werelius B, Margolin S, Lindblom A, Mayordomo JI, Haiman CA, Kiemeney LA, Johannsson OT, Gulcher JR, Thorsteinsdottir U, Kong A, Stefansson K (2007) Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor-positive breast cancer. Nat Genet 39(7):865–869. doi:10.1038/ng2064 PubMedCrossRefGoogle Scholar
  13. 13.
    Thomas G, Jacobs KB, Kraft P, Yeager M, Wacholder S, Cox DG, Hankinson SE, Hutchinson A, Wang Z, Yu K, Chatterjee N, Garcia-Closas M, Gonzalez-Bosquet J, Prokunina-Olsson L, Orr N, Willett WC, Colditz GA, Ziegler RG, Berg CD, Buys SS, McCarty CA, Feigelson HS, Calle EE, Thun MJ, Diver R, Prentice R, Jackson R, Kooperberg C, Chlebowski R, Lissowska J, Peplonska B, Brinton LA, Sigurdson A, Doody M, Bhatti P, Alexander BH, Buring J, Lee IM, Vatten LJ, Hveem K, Kumle M, Hayes RB, Tucker M, Gerhard DS, Fraumeni JF Jr, Hoover RN, Chanock SJ, Hunter DJ (2009) A multistage genome-wide association study in breast cancer identifies two new risk alleles at 1p11.2 and 14q24.1 (RAD51L1). Nat Genet 41(5):579–584. doi:10.1038/ng.353 PubMedCrossRefGoogle Scholar
  14. 14.
    Ahmed S, Thomas G, Ghoussaini M, Healey CS, Humphreys MK, Platte R, Morrison J, Maranian M, Pooley KA, Luben R, Eccles D, Evans DG, Fletcher O, Johnson N, dos Santos Silva I, Peto J, Stratton MR, Rahman N, Jacobs K, Prentice R, Anderson GL, Rajkovic A, Curb JD, Ziegler RG, Berg CD, Buys SS, McCarty CA, Feigelson HS, Calle EE, Thun MJ, Diver WR, Bojesen S, Nordestgaard BG, Flyger H, Dork T, Schurmann P, Hillemanns P, Karstens JH, Bogdanova NV, Antonenkova NN, Zalutsky IV, Bermisheva M, Fedorova S, Khusnutdinova E, Kang D, Yoo KY, Noh DY, Ahn SH, Devilee P, van Asperen CJ, Tollenaar RA, Seynaeve C, Garcia-Closas M, Lissowska J, Brinton L, Peplonska B, Nevanlinna H, Heikkinen T, Aittomaki K, Blomqvist C, Hopper JL, Southey MC, Smith L, Spurdle AB, Schmidt MK, Broeks A, van Hien RR, Cornelissen S, Milne RL, Ribas G, Gonzalez-Neira A, Benitez J, Schmutzler RK, Burwinkel B, Bartram CR, Meindl A, Brauch H, Justenhoven C, Hamann U, Chang-Claude J, Hein R, Wang-Gohrke S, Lindblom A, Margolin S, Mannermaa A, Kosma VM, Kataja V, Olson JE, Wang X, Fredericksen Z, Giles GG, Severi G, Baglietto L, English DR, Hankinson SE, Cox DG, Kraft P, Vatten LJ, Hveem K, Kumle M, Sigurdson A, Doody M, Bhatti P, Alexander BH, Hooning MJ, van den Ouweland AM, Oldenburg RA, Schutte M, Hall P, Czene K, Liu J, Li Y, Cox A, Elliott G, Brock I, Reed MW, Shen CY, Yu JC, Hsu GC, Chen ST, Anton-Culver H, Ziogas A, Andrulis IL, Knight JA, Beesley J, Goode EL, Couch F, Chenevix-Trench G, Hoover RN, Ponder BA, Hunter DJ, Pharoah PD, Dunning AM, Chanock SJ, Easton DF (2009) Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2. Nat Genet 41(5):585–590. doi:10.1038/ng.354 PubMedCrossRefGoogle Scholar
  15. 15.
    Antoniou AC, Pharoah PP, Smith P, Easton DF (2004) The BOADICEA model of genetic susceptibility to breast and ovarian cancer. Br J Cancer 91(8):1580–1590. doi:10.1038/sj.bjc.66021756602175[pii] PubMedGoogle Scholar
  16. 16.
    Mavaddat N, Antoniou AC, Easton DF, Garcia-Closas M (2010) Genetic susceptibility to breast cancer. Mol Oncol 4(3):174–191. doi:10.1016/j.molonc.2010.04.011 PubMedCrossRefGoogle Scholar
  17. 17.
    Wacholder S, Hartge P, Prentice R, Garcia-Closas M, Feigelson HS, Diver WR, Thun MJ, Cox DG, Hankinson SE, Kraft P, Rosner B, Berg CD, Brinton LA, Lissowska J, Sherman ME, Chlebowski R, Kooperberg C, Jackson RD, Buckman DW, Hui P, Pfeiffer R, Jacobs KB, Thomas GD, Hoover RN, Gail MH, Chanock SJ, Hunter DJ (2010) Performance of common genetic variants in breast-cancer risk models. N Engl J Med 362(11):986–993. doi:10.1056/NEJMoa0907727 PubMedCrossRefGoogle Scholar
  18. 18.
    Zheng W, Wen W, Gao YT, Shyr Y, Zheng Y, Long J, Li G, Li C, Gu K, Cai Q, Shu XO, Lu W (2010) Genetic and clinical predictors for breast cancer risk assessment and stratification among Chinese women. J Natl Cancer Inst 102(13):972–981. doi:10.1093/jnci/djq170 PubMedCrossRefGoogle Scholar
  19. 19.
    Reeves GK, Travis RC, Green J, Bull D, Tipper S, Baker K, Beral V, Peto R, Bell J, Zelenika D, Lathrop M (2010) Incidence of breast cancer and its subtypes in relation to individual and multiple low-penetrance genetic susceptibility loci. JAMA 304(4):426–434. doi:10.1001/jama.2010.1042 PubMedCrossRefGoogle Scholar
  20. 20.
    Frazer KA, Murray SS, Schork NJ, Topol EJ (2009) Human genetic variation and its contribution to complex traits. Nat Rev Genet 10(4):241–251. doi:10.1038/nrg2554 PubMedCrossRefGoogle Scholar
  21. 21.
    Sun T, Gao Y, Tan W, Ma S, Shi Y, Yao J, Guo Y, Yang M, Zhang X, Zhang Q, Zeng C, Lin D (2007) A six-nucleotide insertion-deletion polymorphism in the CASP8 promoter is associated with susceptibility to multiple cancers. Nat Genet 39(5):605–613. doi:10.1038/ng2030 PubMedCrossRefGoogle Scholar
  22. 22.
    Stacey SN, Sulem P, Zanon C, Gudjonsson SA, Thorleifsson G, Helgason A, Jonasdottir A, Besenbacher S, Kostic JP, Fackenthal JD, Huo D, Adebamowo C, Ogundiran T, Olson JE, Fredericksen ZS, Wang X, Look MP, Sieuwerts AM, Martens JW, Pajares I, Garcia-Prats MD, Ramon-Cajal JM, de Juan A, Panadero A, Ortega E, Aben KK, Vermeulen SH, Asadzadeh F, van Engelenburg KC, Margolin S, Shen CY, Wu PE, Forsti A, Lenner P, Henriksson R, Johansson R, Enquist K, Hallmans G, Jonsson T, Sigurdsson H, Alexiusdottir K, Gudmundsson J, Sigurdsson A, Frigge ML, Gudmundsson L, Kristjansson K, Halldorsson BV, Styrkarsdottir U, Gulcher JR, Hemminki K, Lindblom A, Kiemeney LA, Mayordomo JI, Foekens JA, Couch FJ, Olopade OI, Gudbjartsson DF, Thorsteinsdottir U, Rafnar T, Johannsson OT, Stefansson K (2010) Ancestry-shift refinement mapping of the C6orf97-ESR1 breast cancer susceptibility locus. PLoS Genet 6(7):e1001029. doi:10.1371/journal.pgen.1001029 PubMedCrossRefGoogle Scholar
  23. 23.
    Tajima K, Hirose K, Inoue M, Takezaki T, Hamajima N, Kuroishi T (2000) A model of practical cancer prevention for out-patients visiting a hospital: the Hospital-based Epidemiologic Research Program at Aichi Cancer Center (HERPACC). Asian Pac J Cancer Prev 1(1):35–47PubMedGoogle Scholar
  24. 24.
    Hamajima N, Matsuo K, Saito T, Hirose K, Inoue M, Takezaki T, Kuroishi T, Tajima K (2001) Gene-environment interactions and polymorphism studies of cancer risk in the Hospital-based Epidemiologic Research Program at Aichi Cancer Center II (HERPACC-II). Asian Pac J Cancer Prev 2(2):99–107PubMedGoogle Scholar
  25. 25.
    Inoue M, Tajima K, Hirose K, Hamajima N, Takezaki T, Kuroishi T, Tominaga S (1997) Epidemiological features of first-visit outpatients in Japan: comparison with general population and variation by sex, age, and season. J Clin Epidemiol 50(1):69–77PubMedCrossRefGoogle Scholar
  26. 26.
    Udler MS, Meyer KB, Pooley KA, Karlins E, Struewing JP, Zhang J, Doody DR, MacArthur S, Tyrer J, Pharoah PD, Luben R, Bernstein L, Kolonel LN, Henderson BE, Le Marchand L, Ursin G, Press MF, Brennan P, Sangrajrang S, Gaborieau V, Odefrey F, Shen CY, Wu PE, Wang HC, Kang D, Yoo KY, Noh DY, Ahn SH, Ponder BA, Haiman CA, Malone KE, Dunning AM, Ostrander EA, Easton DF (2009) FGFR2 variants and breast cancer risk: fine-scale mapping using African American studies and analysis of chromatin conformation. Hum Mol Genet 18(9):1692–1703. doi:10.1093/hmg/ddp078 PubMedCrossRefGoogle Scholar
  27. 27.
    Cox A, Dunning AM, Garcia-Closas M, Balasubramanian S, Reed MW, Pooley KA, Scollen S, Baynes C, Ponder BA, Chanock S, Lissowska J, Brinton L, Peplonska B, Southey MC, Hopper JL, McCredie MR, Giles GG, Fletcher O, Johnson N, dos Santos Silva I, Gibson L, Bojesen SE, Nordestgaard BG, Axelsson CK, Torres D, Hamann U, Justenhoven C, Brauch H, Chang-Claude J, Kropp S, Risch A, Wang-Gohrke S, Schurmann P, Bogdanova N, Dork T, Fagerholm R, Aaltonen K, Blomqvist C, Nevanlinna H, Seal S, Renwick A, Stratton MR, Rahman N, Sangrajrang S, Hughes D, Odefrey F, Brennan P, Spurdle AB, Chenevix-Trench G, Beesley J, Mannermaa A, Hartikainen J, Kataja V, Kosma VM, Couch FJ, Olson JE, Goode EL, Broeks A, Schmidt MK, Hogervorst FB, Van’t Veer LJ, Kang D, Yoo KY, Noh DY, Ahn SH, Wedren S, Hall P, Low YL, Liu J, Milne RL, Ribas G, Gonzalez-Neira A, Benitez J, Sigurdson AJ, Stredrick DL, Alexander BH, Struewing JP, Pharoah PD, Easton DF (2007) A common coding variant in CASP8 is associated with breast cancer risk. Nat Genet 39(3):352–358. doi:10.1038/ng1981 PubMedCrossRefGoogle Scholar
  28. 28.
    Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21(11):1539–1558. doi:10.1002/sim.1186 PubMedCrossRefGoogle Scholar
  29. 29.
    Rockhill B, Newman B, Weinberg C (1998) Use and misuse of population attributable fractions. Am J Public Health 88(1):15–19PubMedCrossRefGoogle Scholar
  30. 30.
    Daly LE (1998) Confidence limits made easy: interval estimation using a substitution method. Am J Epidemiol 147(8):783–790PubMedGoogle Scholar
  31. 31.
    Hosmer DW, Lemeshow S (2000) Logistic regression, 2nd edn. Wiley, New York, pp 156–164CrossRefGoogle Scholar
  32. 32.
    DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44(3):837–845PubMedCrossRefGoogle Scholar
  33. 33.
    Pharoah PD, Antoniou AC, Easton DF, Ponder BA (2008) Polygenes, risk prediction, and targeted prevention of breast cancer. N Engl J Med 358(26):2796–2803. doi:10.1056/NEJMsa0708739 PubMedCrossRefGoogle Scholar
  34. 34.
    Kawase T, Matsuo K, Suzuki T, Hiraki A, Watanabe M, Iwata H, Tanaka H, Tajima K (2009) FGFR2 intronic polymorphisms interact with reproductive risk factors of breast cancer: results of a case control study in Japan. Int J Cancer 125(8):1946–1952. doi:10.1002/ijc.24505 PubMedCrossRefGoogle Scholar
  35. 35.
    Sprague BL, Trentham-Dietz A, Egan KM, Titus-Ernstoff L, Hampton JM, Newcomb PA (2008) Proportion of invasive breast cancer attributable to risk factors modifiable after menopause. Am J Epidemiol 168(4):404–411. doi:10.1093/aje/kwn143 PubMedCrossRefGoogle Scholar
  36. 36.
    Han W, Woo JH, Yu JH, Lee MJ, Moon HG, Kang D, Noh DY (2011) Common genetic variants associated with breast cancer in Korean women and differential susceptibility according to intrinsic subtype. Cancer Epidemiol Biomarkers Prev 20(5):793–798. doi:10.1158/1055-9965.EPI-10-1282 PubMedCrossRefGoogle Scholar
  37. 37.
    Long J, Shu XO, Cai Q, Gao YT, Zheng Y, Li G, Li C, Gu K, Wen W, Xiang YB, Lu W, Zheng W (2010) Evaluation of breast cancer susceptibility loci in Chinese women. Cancer Epidemiol Biomarkers Prev 19(9):2357–2365. doi:10.1158/1055-9965.EPI-10-0054 PubMedCrossRefGoogle Scholar
  38. 38.
    Garcia-Closas M, Hall P, Nevanlinna H, Pooley K, Morrison J, Richesson DA, Bojesen SE, Nordestgaard BG, Axelsson CK, Arias JI, Milne RL, Ribas G, Gonzalez-Neira A, Benitez J, Zamora P, Brauch H, Justenhoven C, Hamann U, Ko YD, Bruening T, Haas S, Dork T, Schurmann P, Hillemanns P, Bogdanova N, Bremer M, Karstens JH, Fagerholm R, Aaltonen K, Aittomaki K, von Smitten K, Blomqvist C, Mannermaa A, Uusitupa M, Eskelinen M, Tengstrom M, Kosma VM, Kataja V, Chenevix-Trench G, Spurdle AB, Beesley J, Chen X, Devilee P, van Asperen CJ, Jacobi CE, Tollenaar RA, Huijts PE, Klijn JG, Chang-Claude J, Kropp S, Slanger T, Flesch-Janys D, Mutschelknauss E, Salazar R, Wang-Gohrke S, Couch F, Goode EL, Olson JE, Vachon C, Fredericksen ZS, Giles GG, Baglietto L, Severi G, Hopper JL, English DR, Southey MC, Haiman CA, Henderson BE, Kolonel LN, Le Marchand L, Stram DO, Hunter DJ, Hankinson SE, Cox DG, Tamimi R, Kraft P, Sherman ME, Chanock SJ, Lissowska J, Brinton LA, Peplonska B, Hooning MJ, Meijers-Heijboer H, Collee JM, van den Ouweland A, Uitterlinden AG, Liu J, Lin LY, Yuqing L, Humphreys K, Czene K, Cox A, Balasubramanian SP, Cross SS, Reed MW, Blows F, Driver K, Dunning A, Tyrer J, Ponder BA, Sangrajrang S, Brennan P, McKay J, Odefrey F, Gabrieau V, Sigurdson A, Doody M, Struewing JP, Alexander B, Easton DF, Pharoah PD (2008) Heterogeneity of breast cancer associations with five susceptibility loci by clinical and pathological characteristics. PLoS Genet 4(4):e1000054. doi:10.1371/journal.pgen.1000054 PubMedCrossRefGoogle Scholar
  39. 39.
    Liang J, Chen P, Hu Z, Zhou X, Chen L, Li M, Wang Y, Tang J, Wang H, Shen H (2008) Genetic variants in fibroblast growth factor receptor 2 (FGFR2) contribute to susceptibility of breast cancer in Chinese women. Carcinogenesis 29(12):2341–2346. doi:10.1093/carcin/bgn235 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Aiko Sueta
    • 1
    • 2
  • Hidemi Ito
    • 1
  • Takakazu Kawase
    • 1
  • Kaoru Hirose
    • 3
  • Satoyo Hosono
    • 1
  • Yasushi Yatabe
    • 4
  • Kazuo Tajima
    • 5
  • Hideo Tanaka
    • 1
    • 6
  • Hiroji Iwata
    • 7
  • Hirotaka Iwase
    • 2
  • Keitaro Matsuo
    • 1
    • 6
  1. 1.Division of Epidemiology and PreventionAichi Cancer Center Research InstituteChikusa-ku, NagoyaJapan
  2. 2.Department of Breast and Endocrine SurgeryKumamoto University Graduate School of Medical ScienceKumamotoJapan
  3. 3.Department of Planning and InformationAichi Prefectural Institute of Public HealthNagoyaJapan
  4. 4.Department of Pathology and Molecular DiagnosticsAichi Cancer Center Central HospitalNagoyaJapan
  5. 5.Aichi Cancer Center Research InstituteNagoyaJapan
  6. 6.Department of EpidemiologyNagoya University Graduate School of MedicineNagoyaJapan
  7. 7.Department of Breast OncologyAichi Cancer Center Central HospitalNagoyaJapan

Personalised recommendations